

DR. D. Y. PATIL VIDYAPEETH

PIMPRI, PUNE – 411 018

DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE

TATHAWADE, PUNE

SYLLABUS

M. TECH. (INTEGRATED) BIOTECHNOLOGY

2023-2024

<u>M. Tech. (Integrated) Biotechnology Programme</u> <u>Program Outcomes (PO)</u>

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSO)

PSO-1	Integrate the knowledge of biology, engineering, and technology to develop sustainable solutions in biotechnology and allied sectors such as biopharmaceuticals, agriculture, environment and personalized medicine.
PSO-2	Solve complex biological problems using the acquired in-depth practical knowledge, research aptitude and domain-specific skill set.
PSO-3	Emerge as industry ready professionals, next-generation entrepreneurs and qualified technical writers through experiential learning.

DR. D.Y. PATIL VIDYAPEETH, PUNE DR. D. Y. PATIL BIOTECHNOLOGY & BIOINFORMATICS INSTITUTE, TATHAWADE, PUNE

COURSE STRUCTURE FOR M. TECH. INTEGRATED BIOTECHNOLOGY

Course Code	Course Name	L	Т	Р	Hr	Cr
BS101	Physics	3	0	2	5	4
BS102	Chemistry	3	0	2	5	4
BT101	Electronics & Instrumentation Engineering	2	0	2	4	3
BI101	Python for Biologists	2	0	4	6	4
HU101	Communication Skills	1	1	0	2	2
BS103	Maths I – Mathematics	2	0	0	2	2
BTAEC101	Aptitude Building-I	0	0	2	2	1
	Total	13	1	12	26	20
SEMESTER II					•	
Course Code	Course Name	L	Т	Р	Hr	Cr
BT201	Biochemistry	3	0	4	7	5
BT202	Cell Biology	3	0	2	5	4
BS201	Maths II -Statistics	2	0	2	4	3
BT203	Engineering Mechanics	2	0	2	4	3
BS202	Environmental Sciences	2	0	2	4	3
BT204	Engineering Graphics	1	0	2	3	2
HU201	Disaster Management*	0	1	0	1	0
BTIKS201	History of Indian Science	1	0	0	1	1
BTAEC201	Aptitude Building-II	0	0	2	2	1
	Total	14	1	16	31	22
*Audit course, d	attendance is must					
SEMESTER II	I					
Course Code	Course Name	L	Т	Р	Hr	Cr
BT301	Analytical Techniques	2	0	4	6	4
BT302	Microbiology & Virology	2	0	4	6	4
BT303	Genetics	3	0	2	5	4
BI301	Concepts in Bioinformatics	2	0	4	6	4
BT304	Biosafety, Bioethics & IPR	2	0	0	2	2
HU301	Universal Human Values II	2	1	0	3	3
BTSEC301	NPTEL/SWAYAM/MOOC online course (Based on the courses offered on the	2	0	0	2	2

•

	MOOCs platform at that point of time)					
BTAEC301	Aptitude Building-III	0	0	2	2	1
	Total	15	1	16	32	24
SEMESTER IV	/					
Course Code	Course Name	L	Т	Р	Hr	Cr
BT401	Molecular Biology	3	0	4	7	5
BT406	Animal Tissue culture	2	0	2	4	3
BT403	Plant Biotechnology	3	0	4	7	5
BT404	Immunology	3	0	2	5	4
BT405	Developmental Biology	2	0	2	4	3
BTIKS401	Indian Regional Biodiversity	0	1	0	1	1
BTAEC401	Aptitude Building-IV	0	0	2	2	1
BTOP401 Non-credit mandatory course	Social outreach program/ Science for Society	0	1	0	1	0
	Total	13	2	16	31	22
SEMESTER V						
Course Code	Course Name	L	Т	Р	Hr	Cr
BT501	Environmental Biotechnology	2	0	2	4	3
BT502	Recombinant DNA Technology	2	0	4	6	4
BT503	Biochemical Engineering & Bioprocess Technology	3	0	4	7	5
BT504	Enzymology & Enzyme Technology	2	0	2	4	3
BI501	R Programming	1	0	0	1	1
BT505/BT50 6/BT507	Elective-I BT505 Biopharmaceuticals BT506 Clinical Research BT507 Human Disease and Pathobiology	3	0	2	5	4
BTSEC501	Science communication	0	0	2	2	1
BTAEC501	Aptitude Building-V	0	0	2	2	1
		13	0	18	31	22
	Total					
SEMESTER V	1					
Course Code	Course Name	L	Т	Р	Hr	Cr
BT601	Food Biotechnology	2	0	2	4	3
BT602	Marine Biotechnology	2	0	0	2	2
BT603	Basic Pharmacology & Toxicology	2	1	0	3	3
BI602	Molecular Modeling & Chemoinformatics	3	0	2	5	4
BI601	Artificial Intelligence	1	0	2	3	2
BT605/BT60 6	Elective II BT605 Perl & Bioperl	3	0	2	5	4

BT606	Structural Biology					
BTIKS601	Indian Constitution and Law	1	0	0	1	1
	Foreign Language Course		-		_	
BTSEC601	German/French/Japanese/Korean/Spanish/	2	0	0	2	
DISLCOOL	any other (online MOOCs/offline)	2	0	U	2	2
BTAEC601	Aptitude Building-VI	0	0	2	2	1
DIAECOUI	Total	0 16	1	2 10	2 27	1 22
	10tai	10	1	10	41	
Course Code	Course Name	L	Т	Р	Hr	Cr
BT706	Molecular Cell Signaling	2	0	0	2	2
BT701	Nanobiotechnology and Biosensors	2	0	2	4	3
HU701	Principles of Management &Entrepreneurial Development	2	0	0	2	2
HU702	Quality Control Management in Biotechnology	2	0	0	2	2
BI702	Design and analysis of Algorithms	1	0	2	3	2
BT702	Seminars in Biotechnology	2	0	0	2	2
BT703/BT704 / BT705	Elective-III BT703 Metabolic Engineering BT704 Agriculture Biotechnology BT705 Cancer Biology	3	0	2	5	4
BTAEC701	Aptitude Building-VII	0	0	2	2	1
I	Total	14	0	8	22	18
Course Code	Course Name	L	Τ	P	Hr	Cr
BI801	Simulation and Bioprocess Modeling	2	0	2	4	3
BT801	Omics Technology	3	0	4	7	5
BT802	Biomedical Engineering	2	1	0	3	3
BT803	Stem Cell Technology	3	0	0	3	3
	Elective IV					
BT804/	BT804 Tissue Engineering	3	0	2	5	4
BT805	BT805 Molecular Diagnostics	12	4	0		10
	Total	13	1	8	22	18
MTMP901	Research Project/Industrial Training/ Review writing/Entrepreneurship Start-up (10 months)			44 (Credit	5
	TOTAL CREDITS			212	2	

Note 1: As regards the assessment of the students with exceptional achievements/performance in games and sports, performing/ fine arts, Social Work, NCC, or other similar subjects/ category is concerned, the same can be defined/prescribed based on their level of competition (State level/ National level/International level/ Commonwealth/ Olympics/ World Championships etc), the level of representation (District/ State/ National/ International), medal/distinction achieved in team/ individual events, and such exceptional performance shall be treated equivalent to an assessment.

	SEMESTER I											
Course Code	Course Name L T P H											
BS 101	Physics	3	0	2	5	4						
BS 102	Chemistry	3	0	2	5	4						
BT 101	Electronics & Instrumentation Engineering	2	0	2	4	3						
BI 101	Python for Biologists	2	0	4	6	4						
HU 101	Communication Skills	1	1	0	2	2						
BS 103	Maths I – Mathematics	2	0	0	2	2						
BTAEC101	Aptitude Building-I	0	0	2	2	1						
	Total	13	1	12	26	20						

COURSE: PHYSICS COURSE CODE: BS 101 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVE

The objective of this course is:

- To create general understanding regarding basic physical principles involved in living systems.
- □ To familiarize the student with basic concepts in physics as: classical optics used in microscopes and telescopes, thermometry and heat, mechanical, fluid and solid-state properties.
- □ To familiarize students with concepts in digital electronics, lasers, sound waves, electricity.
- □ To introduce them to concepts in modern physics such as: production of X-ray, X-ray crystallography, quantum mechanics etc.

COURSE OUTCOME

CO No.	At the end of the course, the learner should be able to:
BS 101.1	Restate the fundamentals of optics and its usage in various biological instrumentation and analysis
BS 101.2	Comprehend the principles and applications of thermometry
BS 101.3	Apply the concepts of surface tension, viscosity, semiconductor devices in real life
BS 101.4	Categorize materials on the basis of elastic and solid-state properties
BS 101.5	Determine and explain the properties of laser and sound
BS 101.6	Demonstrate the applications of modern physics in biological sciences

PREREQUISITES

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

COURSE DESCRIPTION

Unit	Topics	Detail syllabus	No. of
			Lectures
1	Optics: Interference	Introduction to optics, Principles of superposition,	08
	Diffraction &	Constructive & Destructive Interference, Types of	
	Polarization	Interference, Newton's rings.	
		Diffraction- Types of diffraction, Diffraction grating,	
		Rayleigh's criterion, Resolving power of Microscope and	
		Telescope.	
		Polarization of light waves, Polaroid, Optical activity.	
2	Thermometry and	Principles of Thermometry, Temperature and its	05
	Heat	measurements, Platinum resistance Thermometer,	
		Thermocouple and Thermistors, Modes of Heat Transfer.	

		(DEEMED U)	YAPEETH, PUNE
3	Properties of Fluid:	Surface Tension, Surface Energy, Angle of Contact,	07
	Surface Tension &	Capillarity action, Determination of Surface tension by	
	Viscosity	capillary rise method, Jaeger's method, Temperature	
		dependence of surface tension and its applications.	
		Viscosity, Coefficient of viscosity, streamline and turbulent	
		flow, Reynold's number, Stoke's law, Terminal velocity,	
		Determination of 'η' by falling sphere method.	
4	Elasticity	Stress and Strain, Hook's law, Stress-strain curve, Young's	03
		modulus, Determination of Young's modulus.	
	Solids and	Classification of Solids (Conductor, Semiconductor and	05
	Semiconductor	Insulators), intrinsic and extrinsic semiconductors, PN	
	Devices	Junction Diode, Zener Diode, Junction Transistors (CE, CB	
		mode)	
5	Introduction to Digital	Introduction to Binary mathematics, BCD numbers, Basic	02
	Electronics	logic gates, De-Morgan's Theorem	
	Lasers	Properties of Lasers, Production mechanism, Ruby Laser,	03
		Helium Neon Laser, applications of Lasers.	
	Sound waves	Types of sound waves (Longitudinal and Transverse),	03
		Audible, Ultrasonic and Infrasonic waves, Beats, Doppler	
		effect, Applications of Ultrasonic waves.	
	Electricity	Heating effect of electric current, Joule's law, Transformers,	02
		Types of Transformers.	
6	Modern Physics: X-	Introduction to X-Rays: Introduction, Production of X-rays,	07
	rays, Crystallography,	X-Ray diffraction and its Applications.	
	Introduction to	Introduction to crystal structure, Unit cell, seven crystal	
	Quantum Mechanics	systems.	
		Plank's Quantum Theory, Properties of Photon, Photoelectric	
		effect, wave particle duality of radiation, de Broglie's	
		hypothesis, Heisenberg's Uncertainty principle.	
		Total Number of Lectures	45

METHODOLOGY

The course will be covered through lectures supported by practicals.

EVALUATION SCHEME (THEORY

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Physics by D. Haliday and R. Resnik 5 th edition, Wiley Eastern Pub, 2007.
- 2. Perspectives of Modern Physics by A. Beiser, 6 th edition, Mc Graw Hill, 2003.
- 3. Fundamensls of optics by F. A. Jenkins and H. E. White, 4 th edition, Mc Graw Hill, 1976.
- 4. Optics by A. Ghatak, 3 rd edition, Tata Mc Graw Hill, 2006.

PRACTICAL IN PHYSICS(2 Hrs Per Week)Marks 50

The practical training would be in the area of optics, electronics, thermometry, calorimeter, conductivity, measurement of physical properties as: viscosity and surface tension.

LIST OF PRACTICALS

- 1. Diffraction Grating: Use of diffraction grafting for determination of wavelength of spectral lining.
- 2. Resolving Power: To determine the resolving power of Microscope or telescope.
- 3. Diode Characteristics: Study of forward and reverse characteristics of Diode.Transistor Characteristics: Study of characteristics of Photocell.
- 4. Band gap of semiconductor: Study of input and output characteristics of a transistor and determination of band gap of a semiconductor.
- 5. Ultrasonic Interferometer: Determination of velocity of ultrasonic waves by ultrasonic
- 6. Study of logic gates (OR, AND, NOT).
- 7. Thermocouple: Study of variation of thermo emf (electromotive force) with temperature.
- 8. Surface Tension: Determination of the surface tension of a given solution.
- 9. Viscosity: Determination the coefficient of viscosity by Stoke's method and its practical application.
- 10. Joule's Law: Determine of Joule's constant
- 11. Determination of wavelength of monochromatic light by Newton's rings experiments.
- 12. Thermal Conductivity: Determination of coefficient of thermal conductivity of given specimen.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

Matrix for Program Outcome and Program Specific Outcome

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BS 101.1	1	2	1	1	2	1	-	-	2	1	-	-	1	-	-
BS 101.2	1	1	1	1	1	1	-	-	1	1	-	0	1	-	-
BS 101.3	2	1	1	1	2	1	1	1	1	1	-	1	1	1	-

BS 101.4	2	2	1	1	1	1	-	-	-	1	-	1	DE. D. I. PATIL V (DEEMEE	IDYAPEETH, PUN UNIVERSITY) 1	-
BS 101.5	2	1	1	1	1	1	1	1	1	1	-	1	1	1	-
BS 101.6	2	1	1	1	1	1	2	2	1	1	-	1	1	1	1

COURSE: CHEMISTRY

COURSE CODE: BS 102 MARKS: 150 LTP HrC 3 0 2 5 4

OBJECTIVES:

The objective of the course is:

- □ The objective of this course is to familiarize the student with the different concepts of physical and organic chemistry.
- □ The students will learn the structures of organic molecules as: alkanes, alkenes, alkynes, aliphatic and aromatic molecules and the stereochemistry behind the molecules with its importance in day today life
- □ They would learn the Basic concepts and principles with respect to physical chemistry, the bioenergetics of different reactions and the principles and applications of radioactivity.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BS 102.1	Classify chemical structures of hydrocarbons
BS 102.2	Determine the stereochemistry of organic molecules and assess their importance
BS 102.3	Identify and compare electrophilic and nucleophilic reactions
BS 102.4	Explain the concept of osmosis, viscosity, colloids, and prepare buffers for any biological system
BS 102.5	Outline and apply the principles of thermodynamics in biological processes
BS 102.6	Apply the knowledge of radioactivity and radioactive isotopes in biological and medical research and diagnosis

PREREQUISITES

This is the first introductory course and there are no prerequisites.

COURSE DESCRIPTION

Unit	Topics	Detail Syllabus	No. of
			Lectures

D PU	
Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)	

1	Introduction to organic chemistry	Functional groups, Chemistry of alkanes, alkenes, alkynes, aromatic, alicyclic and heterocyclic compounds	PATIL VIDYAPEETH, PUNE (DEMEDUNIVISITY) 7
2	Stereochemistry	Stereo isomers, Enantiomers, Chiral centers/ Optical activity, Geometric isomers Meso- isomers, Conformational isomers, Stereochemistry of Cyclic Aliphatic compounds,	8
3	Reaction mechanisms	Nucleophilic (SN1, SN2, Electrophilic E1 and E2)	3
4	Basic concepts and principles of Physical Chemistry	Osmosis- Diffusion, Osmotic Pressure, Theories of Osmosis. Viscosity –Introduction & Types of viscometer. Colloids-Lyophilic & Lyophobic sols, Optical properties, Electrical properties of sols, Gold number. Donnan Equilibrium. Phase rule-Phase, Components & Degree of freedom. Derivation of Phase rule. Phase diagram. Water system. Acid-bases- Three concepts of acids & bases, pH meter & types of electrodes, Buffer solution, Acid base indicator, Law of mass action, Numerical.	11
5	Bioenergetics	First & Second laws of Thermodynamics, Internal energy, Enthalpy, Entropy, concept of free energy, Standard free energy change of a chemical reaction, ATP & high energy phosphates compounds. Chemical equilibrium constant, Nernst equation	6
6	Basic principles of radioactive isotopes	Isotopes in Biology- Properties, Half-life, Radioactive decay. Measurement of radioactivity-Methods based on Gas ionization (Ionization chamber, Proportional counter, Geiger counter), Photographic methods, Methods based on Excitation (Liquid & solid Scintillation counting), Quenching. Use of Isotopes-Tritium, Iodine-131, Nitrogen-15, Oxygen-18, Carbon-14, Phosphorus-32, Sulphur-35.	9
		Total Number of Lectures	45

Methodology

The course will be covered through lectures, demonstration and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 min	20
II Internal	45 min	15
Attendance		5
End Semester Exam	2 hours 30 min	60
Total		100

PRACTICAL IN CHEMISTRY (2 Hrs. Per Week) MARKS 50 LIST OF PRACTICAL

- 1. Acid-Base Titration
- 2. Back Titration
- 3. Determination of optical activity using a Polarimeter
- 4. Viscosity, Osmosis and Diffusion techniques
- 5. Demonstrate the procedure for determining Melting/Boiling point
- 6. To determine the pH of a solution using a polarimeter
- 7. Study of exothermic and endothermic reactions.
- 8. Determine the heat of combustion of ethyl alcohol
- 9. Determine the heat of neutralization of strong acid and strong base

Sr. No.	Name of the experiment	Learning objective
1	Acid-Base Titration	To understand the concept of titration and how to calculate
		the strength of acid and base.
3	Back Titration	To analyze the concentration of analyte based upon chemical
		reaction.
4	Determination of optical	Help them to analyze the degree of rotation of plane polarised
	activity using a	light
	Polarimeter	
5	Viscosity, Osmosis and	To analyze the physical properties of compound by measuring
	Diffusion techniques	i) hypotonic, isotonic and hypertonic nature
		ii)thickness, sticky and semifluid consistency
6	Demonstrate the	The practical will teach them how to analyze the transition
	procedure for determining	point from solid to liquid and ii) liquid to vapor phase.
	Melting/Boiling point	
7	To determine the pH of a	It will guide them to measure the pH of a solution in terms of
	solution using a	H+ ion concentration and to understand importance of pH in
	polarimeter	biological experiments.
8	Study of exothermic and	To understand the concept of thermodynamics of reaction
	endothermic reactions.	based upon the absorption or release of heat energy.
9	Determine the heat of	To measure the amount of heat energy released during a
	combustion of ethyl	chemical reaction.
	alcohol	
10.	Determine the heat of	To measure the change in enthalpy in a neutralization reaction
	neutralization of strong	to form water and a salt.
	acid and strong base	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

Matrix for Program Outcome and Program Specific Outcome

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BS 102.1	3	1	1	1	0	1	0	0	1	1	0	0	3	2	1
BS 102.2	3	2	1	1	0	1	0	0		1	0	2	1	3	1
BS 102.3	3	2	1	1	0	1	1	0	1	1	0	2	3	1	1
BS 102.4	3	2	1	2	2	1	1	1	1	1	1	2	3	1	1
BS 102.5	3	2	1	1	1	1	1	1	1	1	1	2	3	1	1
BS 102.6	3	1	1	1	1	1	2	2	1	1	1	2	2	2	3

COURSE: ELECTRONICS AND INSTRUMENTATION ENGINEERING

COURSE CODE: BT 101	
MARKS: 100 (Theory 50 + Practical 50)	

L	Т	Р	Hr	С
4	3	2	0	2

OBJECTIVE:

Objective of the course is to familiarize students with the basic concepts of electronic engineering and electronics engineering.

This knowledge would help them in applying them in various biological techniques. Also the Knowledge of this subject will form a profound base for the instrumentation used in various advanced courses of Biotechnology and Bioinformatics.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 101.1	Outline the basic concepts of electronics and semi-conductor devices
BT 101.2	Demonstrate the different applications of linear integrated circuits
BT 101.3	Examine and classify various digital electronic components for circuit designing
BT 101.4	Illustrate the working of temperature and pressure transducers

PREREQUISITES:

Since the course is very basic in nature, school level knowledge of physics and mathematics is required.

COURSE DESCRIPTION

Unit	Торіс	Detail Syllabus	No. of		
			Lectures		
1	Basics	History and scope of electronics, Electrical signals,			
		passive electronic components, resistors, capacitors,			
		inductors, Bio signals			
	Semiconductor devices	Diode circuits, P-N junction diode, biasing, half	2		
		wave and full wave rectification			
2	Linear integrated circuits	Introduction to operational –amplifiers,	8		
		characteristics of op-amp, virtual short and virtual			
		ground, concept of feedback, inverting and non-			
		inverting amplifier, applications of op-amp,			
		addition, subtraction, integration, and			
		differentiation			
3	Digital electronics	Digital circuits, AND, OR, NOT, NAND, NOR,	8		
		EX-OR, EX-NOR, Boolean algebra, half adder, full			
		adder, multiplexers and de-multiplexers, flip-flops,			
		shift registers, counters, block diagram of			
		microprocessor and microcontroller			
4	Basic instrumentation	Sensors and transducers, basic measurement	6		
		system, static and dynamic characteristics of an			
		instrument, signal conditioning circuits			
	Tota	l Number of lectures	30		

METHODOLOGY:

The course will be covered through lectures, demonstration and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal*	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50
*Average of Internal I (15	marks) and Internal II (15 mar	·ks)

PRACTICALS ELECTRONICS AND INSTRUMENTATION ENGINEERING (2 Hrs. PER WEEK) MARKS 50

LIST OF PRACTICALS

1. Study of passive components in electronics Resistors, Inductors, capacitors, relay, switches, transformers and connectors.

- 2. Study of basic electronics measuring instruments DMM, CRO and function generator.
- 3. Study of semiconductor devices, P-N junction Diode. Plot VI characteristics of P-N junction diode.

4. Study of operational amplifier Part I : Op-amp IC741, Part II: Op-amp as inverting and non-inverting amplifier.

- 5. Study of digital logic circuits.
- 6. Study of pH electrode.
- 7. Study of resistance type temperature transducers.
- 8. Study of conductivity meter electrode.
- 9. Study of 8085 microprocessor.

Sr no.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
1	Study of passive components in electronics Resistors, Inductors, capacitors, relay, switches, transformers and connectors.	Students should able to learn different passive components, their classification, symbol, and unit.	Principles of Electronics by V.K.Mehta and R. Mehta, S. Chand, 2005
2	Study of basic electronics measuring instruments DMM, CRO and function generator.	Students should able to operate CRO, function generator to generate different electrical signals. They should able to measure Voltage, current, frequency and time period of waveforms.	

			Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)
3	Study of semiconductor devices, P-N junction Diode. Plot VI characteristics of P-N junction diode.	Students should able to learn different semiconductor devices like diode, transistors and also working of PN junction diode. They should able to plot VI characteristics graph.	
4	Study of operational amplifier Part I : Op-amp IC741 Part II: Op-amp as inverting and non-inverting amplifier.	Students should able to learn basic working principle of op-amp, pin diagram of IC 741.	
5	Study of digital logic circuits.	Students should able to learn different logic gates, their truth table and timing diagram.	
6	Study of pH electrode.	Students should able to understand operation of pH electrode for the measurement of pH.	
7	Study of resistance type temperature transducers.	Students should able to learn working principle of different resistance type temperature transducers like PRT, RTD, Thermistor, thermocouple	Basic electronics by J.S. Katre, Techmax publication, 2014
8	Study of conductivity meter electrode.	Students should able to understand the operation of conductivity meter electrode to measure conductivity of a solution.	Theory and applications of conductivity http://www.evisdom .com/
9	Study of 8085 microprocessor.	Students should able to understand pin diagram, block diagram and architecture of 8085 microprocessor.	http://8085projects.i nfo/

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

Matrix for Program Outcome and Program Specific Outcome

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

BT 101.1	3	1	1	1	2	3	2	-	-	3	-	3	2	1	-
BT 101.2	3	2	2	-	3	3	-	-	-	3	-	3	2	2	-
BT 101.3	3	3	3	-	-	3	-	-	-	3	-	-	3	2	-
BT 101.4	3	2	2	2	2	2	-	-	-	3	-	-	2	2	-

Course: PYTHON FOR BIOLOGISTS	L	T P Hr C
Course Code: BI 101	2	0 4 6 4

MARKS: 150 (Theory 100 + Practical 50)

OBJECTIVE:

The course is designed to enable the students understand the basics of Python programming and design scripts for analysis of biological data.

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BI 101.1	Apply Primitive and Non-Primitive Data types and use conditional statements
BI 101.2	Make use of functional libraries, modules, and platforms
BI 101.3	Apply Regular Expressions and file handling
BI 101.4	Demonstrate the capability of writing in-house scripts and analyze biological data.

PRE-REQUISITE

Basic Knowledge and Understanding of Computer.

COURSE DESCRIPTION

Unit	Topics	Detail Syllabus	Lectures
1.		Basic Computer Architecture, operating systems etc., Feature(s) of object-oriented programming (OOP), Programming Languages used for biological data analysis with their relevance.	4
2	Fundamentals	A Brief History of Python, Applications areas of Python, Python data types, Python data structures – lists, tuples, strings, dictionaries, sets, type conversion in python, conditions and if statements - if else and elif, standard input & output, Python flow control: For loop, While Loop, Break: Breaking the Loop.	7
	•	Python functions: string and list operations, list operations – concatenations, splice, add or remove elements, copy etc; Modules and Packages: Importing Modules, writing own modules, Standard library modules, dir () Function, Working with modules like Pandas, Numpy, Scipy etc., Functional Programming features like Lambda, Map, Filter, Reduce.	9
3	Expressions and File Handling	Python regular Expressions – match, substitute, translate, binding operator; File handling in Python – opening a file in read only mode, write mode, append mode, A Special Kind of File: CSV, Functions from the CSV Module.	4

Unit	Topics	Detail Syllabus	Lectures			
4	analysis: Case	Use of Python packages and libraries relevant to the different biological data type, Python web integration -Python-CGI and working on Jupyter Notebook.	6			
	Total no. of Lectures					

METHODOLOGY:

The course will be covered through lectures, demonstration, and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal*	45 minutes	15
Attendance		05
End Semester Exam	1 hours 15 minutes	30
Total		50

*Average of Internal I (15 marks) and Internal II (15 marks)

BOOKS RECOMMENDED:

1.Python Programming for Beginners. Code One Publishing. 2023. ISBN-13:979-8361503742

- 2.Python Crash course,3rd Edition –December 2022,552pp A Hands-on, Project Based Introduction to Programming by Eric Matthes
- 3.Conceptual Programming with Python By Thorsten Altenkirch and Isaac Triguero, 2020, ISBN :9780244277567
- 4.Python for Bioinformatics By Sebastian Bassi 2nd edition,2017, ISBN-10 1138035262, ISBN-13 978-1138035263
- 5. Python for Bioinformatics By Sebastian Bassi 2nd edition 2018
- 6.Advanced Python for Biologists by Martin Jones ,2014, ISBN-10 1495244377, ISBN-13 978-1495244377

7.Martin Jones, PYTHON FOR BIOLOGISTS: A complete programming course for beginners. Createspace Independent Publishing Platform. 2013. ISBN-13: 978-1492346135

PRACTICALS IN PYTHON(4 Hrs. Per Week)M

MARKS 100

LIST OF PRACTICALS

1. Installation of Python on Windows desktops

2. Write a python script to take DNA sequence as input and calculate and print the length of input sequence

3. Write a Python script to take DNA sequence as input and convert it into RNA and print the RNA transcript

4. Write a Python script to take the DNA sequence as input and calculate the total number of A,T,G,C and the GC content of the input DNA sequence

5. Write a program to check whether the input recognition sequence is present in the input DNA sequence

6. Write a Python script to read a fasta format protein sequence from a file and calculate the protein composition - frequency of amino acid/total length of protein

7. Write a Python script to convert an input DNA sequence into an RNA sequence using the substitute operator

8. Using regular expressions, write a Python script to print the reverse complement of the input sequence

9. Write a Python script to check the quality of primer - length and melting temperature - calculate the melting temperature of an input primer sequence using the formula Tm=4(G+C)+2(A+T)

10. Write a Python script to identify the longest Open reading frame in a given DNA sequence read in all 6 frames

11. Reading a data frame through Pandas and basic biological data analysis using Jupyter notebook.

Sr. no.	Name of the experiment
1	Installation of Python on Windows desktops
2	Write a python script to take DNA sequence as input and calculate and print the length of input sequence
3	Write a Python script to take DNA sequence as input and convert it into RNA and print the RNA transcript
4	Write a Python script to take the DNA sequence as input and calculate the total number of A,T,G,C and the GC content of the input DNA sequence
5	Write a program to check whether the input recognition sequence is present in the input DNA sequence
6	Write a Python script to read a fasta format protein sequence from a file and calculate the protein composition - frequency of amino acid/total length of protein

Sr. no.	Name of the experiment
7	Write a Python script to convert an input DNA sequence into an RNA sequence using the substitute operator
8	Using regular expressions, write a Python script to print the reverse complement of the input sequence
9	Write a Python script to check the quality of primer - length and melting temperature - calculate the melting temperature of an input primer sequence using the formula $Tm=4(G+C)+2(A+T)$
10	Write a Python script to identify the longest Open reading frame in a given DNA sequence read in all 6 frames
11	Reading a data frame through Pandas and basic biological data analysis using Jupyter notebook.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

Matrix for Program Outcome and Program Specific Outcome

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BI 101.1	1	1	-	-	-	-	-	-		-	-	-	1	-	-
BI 101.2	1	1	-	-	-	-	-	-	1	-	-	-	1	-	-
BI 101.3	1	1	-	-	-	-	-	-		-	-	-	1	-	-
BI 101.4	1	1	1	-	1	1	-	-	1	-	1	-	1	-	-

COURSE: COMMUNICATION SKILLS COURSE CODE: HU-101 MARKS: 50

L T P Hr C 1 1 0 2 2

OBJECTIVE:

The objective of this course is:

- □ To develop communication skills amongst students,
- □ To familiarize students with communication elements,
- □ To acquaint them with the scientific reading, Writing & Presentation skills.
- □ To familiarize students with concepts in plagiarism.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
HU 101.1	Display skills in different and appropriate ways of communication

HU 101.2	Proficiently compose well-structured and coherent documents such as emails, reports and essays											
HU 101.3	Demonstrate competence in verbal skills and different types of											
	documentations like scientific report writing and research papers											
HU 101.4	Follow ethical practices of communication											

PREREQUISITES:

This is an introductory course and there are no prerequisites.

COURSE DESCRIPTION:

Unit	Topics	Detail Syllabus	No. of
			Lectures
1	Introduction to	Elements, definitions	02
	communication	Scope of communication and communication as part of science	
2	Communication	Verbal and nonverbal communications.	03
	elements	Principles of effective communication, Oral presentations,	
		Barriers to communications, Use of good English: Introduction to	
		English Grammar: parts of speech, use of articles & prepositions,	
		use of correct tense, spellings etc.	
3	Scientific reading,	Introduction to scientific reports and writings?	07
	writing &	Compilation of experimental data, Communication methods in	
	presentation	science, Use of good English in science, Examples of Scientific	
		and Unscientific writing.	
		Process of Scientific writing: thinking, planning, rough drafts and	
		revising context.	
		Different styles of scientific writing APA, MLA or Chicago.	
		Writing papers	
		Reviews and Bibliography	
4	Plagiarism	Introduction to Plagiarism	03
		Examples of Plagiarism	
		Total Number of Lectures	15

METHODOLOGY

The course will be covered through lectures supported by tutorials. During tutorials, students would be made to present scientific and nonscientific data/information using different communication skills. They would be corrected as and when needed and taught how to improve their skills in reading, writing and data presentation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	60
Total		50

BOOKS RECOMMENDED:

- 1. Technical Writing and Professional Communication by T. N. Huckin and L. O. London, William Collins and Sons, 1990.
- 2. Business English and Communication- By L. Clark and Zimmer, New York Mcgraw Hill, 1990.
- 3. Developing Communications by K. Mohan and M. Banerji, Macmillan India Limited, 2000.

Matrix for Program Outcome and Program Specific Outcome

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HU 101.1		-	-	-	2	-	-	1	2	3	2	3		-	1
	-												-		
HU 101.2	-	-	-	-	2	-	-	-	2	3	1	3	1	1	1
HU 101.3	-	-	-	-	1	-	-	-	2	3	2	3	1	1	2
HU 101.4	-	-	-	-	2	-	-	-	3	3	2	3	1	1	3

COURSE: Maths I – MATHEMATICSCOURSE CODE: BS-103L T P Hr CMARKS: 502 0 0 2 2OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in mathematics.

COURSE OUTCOME

CO No.	At the end of the course, the learner should be able to:
BS 103.1	Recall the basics of logarithms and binomial expansions
BS 103.2	Explain various trigonometric functions and their factorization
BS 103.3	Illustrate various mathematical functions and evaluate their limits
BS 103.4	Discuss the concepts of derivatives and their applications
BS 103.5	Apply the fundamentals of integral calculus to determine area and volume
BS 103.6	Analyse various types of differential equations

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the 10+2 level they should have cleared the core mathematics in the first semester.

<u> </u>	URSE DESCR	IPTION	(DEEMED UNIVERSITY)
Unit	Topics	Detail Syllabus	No. of
			Lectures
1	Algebra	Logarithms: Definition of Logarithm, Natural and common	
		logarithm, Relation between Natural and Common logarithm,	
		Laws of Logarithm (Logarithm of product, Logarithm of quotient,	
		Logarithm of power, Rule of Change of Base).	05
		Binomial Theorem: Definition, Binomial Expansion, Properties	
		of Binomial Coefficient, General term, Middle term, Binomial	
		theorem for any index	
2	Trigonometry	· · ·	
		angle, Measurement of T Ratios, Addition, subtraction, and	
		transformation formula, Relation Between T ratios, Quadrants	05
		sign of T-ratios in various quadrants,	
		Inverse Trigonometric Functions: Definition of Inverse t-	
		functions	
3		Function & Variable: Definitions of variable, Constant.	
	Limit	Definitions of function, value of function, domain & range of a	
		function.	05
		Limits: Concepts and definition of Limit, Limits of algebraic	05
		functions, trigonometric functions, exponential functions,	
		logarithmic function.	
4	Derivatives	Definition of Derivatives, Notations, Rules of Derivatives,	
		Derivatives of composite functions, Derivatives of Inverse	
		trigonometric function, Derivatives of Implicit functions,	06
		Logarithmic differentiation.	00
		Application of Derivatives: Geometrical meaning of the	
		derivatives.	
5	Integration	Definition of integration, Integration of Standard function; Rules	
		of Integration, Integration of rational functions; Trigonometric	
		functions to determine constant of Integration.	05
		Definite Integration: Definition of Definite integral, Definite	00
		integral with simple problems	
		Application of Definite Integrals: Area under the curves.	
6	Differential	Definition of D.E, Order & degree of D.E, formation of D.E for	
	Equation	function containing single constant.	
	(D.E.)	Solution of D.E. of first order & first degree such as:	04
		i) Variable separable type.	Τ
		ii) Equation reducible to variable separable form by substitution.	
	1	Total Number of Lectures	30

COURSE DESCRIPTION

METHODOLOGY

The course will be covered through lectures supported by tutorials. In tutorials difficulties would be solved. Problems would be given. Students would be given assignments in the form of questions. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		05
End Semester Exam	1 hours 150 minutes	30
Total		50

BOOKS RECOMMENDED:

- 1) Mathematics for Biological Science by J. Arya & Ladner, Prentice Hall, 1979.
- 2) Numerical methods by E. Balguruswamy, Tata Mc Graw Hill Publications Pvt Ltd., 1999.
- 3) Higher Engineering Mathematics by B. S. Grewal, Khana Publication, New Delhi, 2003.
- 4) Applied Mathematics by P. N. Wartikar, Pune Vidaypeeth, Griha Prakashan, Pune, 2010.
- 5) Introductory Methods of Numerical analysis by S. S. Sastry, Prentice Hall of India, New Delhi. 2005.

Matrix for Program Outcome and Program Specific Outcome

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BS 103.1	3	3	2	-	-	-	-	-	-	1	-	-	1	2	-
BS 103.2	3	3	2	-	-	-	-	-	-	1	-	-	1	2	-
BS 103.3	2	1	2	-	-	-	-	-	-	1	-	-	1	1	-
BS 103.4	2	1	1	-	-	-	-	-	-	1	-	-	1	2	-
BS 103.5	3	2	2	-	-	-	-	-	-	1	-	-	1	2	-
BS 103.6	3	3	3	-	-	-	1	-	-	1	-	-	1	2	-

COURSE: APTITUDE BUILDING -I COURSE CODE: BTAEC101

MARKS: 50

OBJECTIVE

- 1. To enhance the logical reasoning skills of the students and improve problem-solving abilities
- 2. To strengthen the ability of solving quantitative aptitude problems

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTAEC101.1	Learn to defend and critique concepts of logical reasoning
BTAEC101.2	Develop expertise in solving problems of quantitative Aptitude

LT P Hr C

1

0 0 2 2

BTAEC101.3	Develop technical skills	ra) (
BTAEC101.4	Develop analytical understanding	

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course.

COURSE DESCRIPTION

Sr no.	Practical/Training/Tests/Interviews	No. of
		Lectures
1	Lessons on Excellence	02
2	Thinking Skill	02
3	Logical Reasoning	04
4	Puzzle solving	02
5	Attention to detail	02
6	Quantitative Aptitude	06
7	Technical Sessions on Biophysics	02
8	Technical Sessions on Chemistry and Biochemistry	02
9	Technical Sessions on Electricity and Biological System	02
10	Competitive Examination Preparation	02
11	Mock Interviews	02
12	Discussion session-Industry Experts/Academia Experts/Alumni	02
	TOTAL	30

METHODOLOGY

The course will be covered through Lectures/Assignments/Practical/Training/Tests/Interviews

EVALUATION SCHEME (THEORY)

Examination	Marks
Continuous Internal Assessment	20
Attendance	
Assignments/Practical/Training/Tests/Interviews	30
Total	50

BOOKS RECOMMENDED:

1. R. S. Aggarwal, (2017). Quantitative Aptitude for Competitive Examinations, 3rd (Ed.). New Delhi: S. Chand Publishing

2. ETHNUS, (2016). Aptimithra, 1st (Ed.). Bangalore: McGraw-Hill Education Pvt. Ltd. Reference Book(s):

3. Arun Sharma, (2016). Quantitative Aptitude, 7th (Ed.). Noida: McGraw Hill Education Pvt. Ltd.

	РО	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
BTAEC101.1	-	1	1	-	1	-	-	-	-	-	-	1	2	-	-
BTAEC101.2	1	1	1	-	-	-	-	-	-	-	-	-	1	-	-
BTAEC101.3	1	1	1	-	1	-	-	-	-	-	-	-	1	-	-
BTAEC101.4	1	1	1	-	1	-	-	-	-	-	-	-	1	-	-

SEMESTER II							
Course Code	Course Name	L	Т	Р	Hr	Cr	
BT 201	Biochemistry	3	0	4	7	5	
BT 202	Cell Biology	3	0	2	5	4	
BS 201	Maths II -Statistics	2	0	2	4	3	
BT 203	Engineering Mechanics	2	0	2	4	3	
BS 202	Environmental Sciences	2	0	2	4	3	
BT 204	Engineering Graphics	1	0	2	3	2	
HU 201	Disaster Management*	0	1	0	1	-	
BTIKS201 (Indian	Histom of Indian Science		0	0	1	1	
Knowledge Systems)	History of Indian Science	1	0	0	1	1	
	Aptitude Building-II (includes Competitive						
BTAEC201 (Ability	exam preparation, placement related	0	0 0		2	1	
Enhancement)	sessions and alumni interactions and	0	0	2	Z	1	
	trainings)						
Total 14 1 16 31 22							
	*Audit course, attendance is must						

COURSE: BIOCHEMISTRY COURSE CODE: BT-201 MARKS: 200 (Theory 100 + Practical 100)

L T P Hr C 3 0 4 7 5

OBJECTIVE:

The objective of the course is to familiarize the students to

- □ Chemical reactions that occur in living organisms in order to maintain the cellular and physiological activities of life
- □ How to maintain homeostasis between the synthesis and degradation of products.

CO No.	At the end of the course, the learner should be able to:
BS 201.1	Classify biomolecules based on their structure and function
BS 201.2	Categorize cellular pathways of anabolism and catabolism
BS 201.3	Illustrate pathways of carbohydrate metabolism and their significance
BS 201.4	Illustrate the pathways of lipid and amino acid metabolism and their significance
BS 201.5	Explain the concept of oxidative phosphorylation and electron transport chain for ATP synthesis
BS 201.6	Perform isolation of important biomolecules and their qualitative analysis

COURSE OUTCOME:

PREREQUISITES:

The course requires that the students shall be aware about the basics of chemistry and biomolecules.

Unit	Торіс	Detail Syllabus	No. of Lectures
1.	Biomolecules and Bioenergetics	Carbohydrate: Structure and classification of Monosaccharides, Oligosaccharides and Polysaccharides. Derived sugars.	3
		Amino acids: Structure, classification and properties	2
		Protein: Classification and functions Structure: Primary, Secondary, tertiary, quaternary	3
		Nucleic acids: Structure of nucleotides, DNA and RNA	2
		Fatty acids and lipids: Structure and classification. Compound lipids	2
		Enzymes: Classification and concept of regulation	2
		Vitamins and coenzymes	2
2.	Survey of metabolism	Introduction to metabolism-catabolism, anabolism and intermediary metabolism.	1
3.	Glycolysis	Glycolytic pathway and energetics	2
		Anaerobic pathway of glucose metabolism	1
	Gluconeogenesis and Glycogen Metabolism	Bypass reactions, Regulation of gluconeogenesis by enzymes and hormones.	2
		Glycogenolysis and glycogenesis	4
	Citric acid cycle	Aerobic pathway of glucose metabolism. Balance sheet. Regulation of the cycle.	3
4.	Lipid Metabolism	Requirement of carbon dioxide and citrate for biosynthesis, FAS complex and regulation of biosynthesis	3
		β -oxidation of monounsaturated and polyunsaturated fatty acids, Energetics of β oxidation.	3
	Amino acid metabolism	Transamination, deamination and decarboxylation reactions, Urea cycle	2
5.	Electron transport chain and Oxidative	Complexes I, II, III and IV, components of electron transport chain and their structure. Reactions of the electron transfer.	2
	phosphorylation	Oxidative phosphorylation, structure of ATPase enzyme, chemiosmotic hypothesis.	2

COURSE DESCRIPTION

			Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)				
6.	Biosynthesis of	Glutamate, glutamine, arginine from α - ketoglutatrate	4				
	amino acids and its regulation						
Total Number of lectures							

METHODOLOGY:

The course should be taught through interactive lectures and demonstrations, which will help all the students to correlate the subject to everyday activity.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. The principles of Biochemistry, Lehninger by D. Nelson, and M. Cox, 7th edition, M. W.H. Freeman and Company, New York, 2017.
- 2. Metabolic Pathways by D. M. Greenberg, 3rd edition, Academic Press, Elsevier Science & Technology Books, 2014.
- 3. Biochemistry by L. Stryer, 7th edition, W.H. Freeman and Company, New York, 2012.
- 4. Biochemistry by J. M. Berg, J. L. Tymoczko, L. Stryer, 6th edition, W.H. Freeman and Company, New York, NY, 2007.
- 5. Biochemistry by G. Zubay, Addison-Wesley Educational Publishers Inc, 1983.
- 6. Outlines of Biochemistry by E. Conn and P. Stumpf, 5th edition, John Wiley & Sons, 2009.
- 7. Principles of Biochemistry by D. J. Voet, J. G. Voet, C. W. Pratt, 3rd edition, (International Student Version), John Wiley and Sons, Inc., 2008.

PRACTICAL IN BIOCHEMISTRY(4 Hrs. PER WEEK)MARKS 100

LIST OF PRACTICALS

- 1. Preparation of standard solutions.
- 2. Verification of Beer Lambert's law and determination of λ max of CuSO4/KMnO4 solution.
- 3. To find out the pka value of glycine using titrimetric method.
- 4. Qualitative analysis of carbohydrates (Monosaccharides, disaccharides and polysaccharides)
- 5. Qualitative analysis of amino acids
- 6. Qualitative analysis of lipids (unsaturated oils, glycerol and cholesterol)
- 7. Qualitative analysis of proteins using different tests
- 8. Quantitative estimation of proteins using Biuret/ Lowry method/ Bradford method
- 9. Estimation of reducing sugar by DNSA method

- 10. Isolation of starch and casein
- 11. Acid value of oil / saponification value

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of standard solutions.	To understand the concepts of Normality, Molarity, Molality and ppm.	An Introduction to Practical Biochemistry by D. T. Plummer, 3 rd edition, Tata McGraw Hill
2	Verification of Beer Lambert's law and determination of λmax of CuSO4/KMnO4 solution.	To understand the basic principles of colorimetry	Education Private Limited, New Delhi, 2011.
3	To find out the pka value of glycine using titrimetric method.	Study of principles of titrimetry and understanding the concepts of pH, pKa, and pKb.	
4	Qualitative analysis of carbohydrates (Monosaccharides, disaccharides and polysaccharides)	To understand the chemistry of a compound and the importance of different reagents.	 Experimental Biochemistry, A student Companion by B. S. Rao and V. Deshpande, I.K. International Publishing House Pvt. Ltd, 2005.
			 Qualitative testing for carbohydrates by J. O. Schreck and W. M. Loffredo, Chemical Education Resources, Inc., 1994.
5	Qualitative analysis of amino acids	To confirm the presence of amino acids based upon the presence of functional group.	Practical manual of Biochemistry by S.P. Singh, 5 th edition, 2011
6	Qualitative analysis of lipids (unsaturated oils, glycerol and cholesterol)	To study the physical properties of lipids as solubility, emulsification and other chemical characteristics such as acidic nature.	 Experimental Biochemistry, A student Companion by B. S. Rao and V. Deshpande, I.K. International Publishing House Pvt. Ltd, 2005.
7	Qualitative analysis of proteins using different tests	To understand the biochemical properties of proteins.	www.biologydiscussion.com
8	Quantitative estimation of proteins using Biuret/ Lowry method/ Bradford method	To understand the method of quantification of proteins in mg/µg.	 Hawk's physiological chemistry by B. L. Oser, 14th edition, McGraw- Hill Book Company., New York, N. Y., 1996.
			 Review of Physiological Chemistry by H.A. Harper, V.W. Rodwell, P.A. Mayes, Harold Anthony, 17th

г

			edition, Lange Medical Publications, Los Altos California, 1979.
9	Estimation of reducing sugar by DNSA method	To understand the method of quantification of sugars in mg/µg.	Use of dinitrosalicylic acid reagent for determination of reducing sugar, G.L. Miller, , <i>Anal. Chem.</i> , 31, 426, 1959.
10	Isolation of starch and casein	To understand the methods for isolation of biomolecules and their quantification	Hawk's physiological chemistry by B. L. Oser, 14th edition, McGraw-Hill Book Company.,New York, N. Y., 1996.
11	Acid value of oil / saponification value	To understand the quality of and nutritional value of lipids.	An Introduction To Practical Biochemistry by D. T. Plummer, 3 rd edition, Tata McGRAW-HILL Edition, 1998.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

Matrix for Program Outcome and Program Specific Outcome

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BS 201.1	2	3	3	3	-	-	-	-	-	3	-	-	2	1	1
BS 201.2	3	3	3	2	2	2	-	-	-	2	-	-	3	3	1
BS 201.3	2	2	3	3	-	2	-	-	-	3	-	-	2	2	1
BS 201.4	2	3	3	3	-	2	-	-	-	2	-	-	3	2	1
BS 201.5	2	3	3	2	-	2	-	-	-	2	-	1	3	2	1
BS 201.6	2	2	3	3	2	3	-	-	2	1	-	1	3	3	3

COURSE: CELL BIOLOGY COURSE CODE: BT 202 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVE:

The objective of the course is to familiarize the students with basic concepts of cell Biology. This is essential for taking further courses in Biotechnology during the next couple of years.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BS 202.1	Explain the basic cell structure, classification, and pre-cellular evolution of prokaryotic and eukaryotic cells
BS 202.2	Illustrate the instrumentation and application of different types of microscopic techniques to study cell structure
BS 202.3	Outline the structure and function of cell organelles, membrane structures and different transportation models of biomolecules
BS 202.4	Demonstrate cell cycle and division of prokaryotic and eukaryotic cells
BS 202.5	Outline cell signalling molecules and their receptors and illustrate programmed cell death and its significance
BS 202.6	Summarize importance of stem cells in cell differentiation and causes of neoplastic transformation

PREREQUISITES

This is an introductory course. There are no prerequisites for the course.

COURSE DESCRIPTION

Unit	Торіс	Detail Syllabus	No. of Lectures
1.	Introduction	Pre-cellular evolution: artificial evolution of cells, RNA world hypothesis, Postulates of cell theory, Endosymbiotic theory, Broad classification of cell types, Comparative study on Prokaryotic cell and Eukaryotic Cell (Animal and Plant Cell)	3

		Dr. D.Y. PA	TIL VIDYAPEETH, PUNE
2.	Methods to study cell structure and function and model organisms used in cell biology	Light Microscopy, Electron Microscopy, Fluorescence Microscopy, Confocal Microscopy, Deconvolution Microscopy, Flow cytometry and Cell sorting, Subcellular Fractionation, Introduction to animal cell, plant cell and virus culture, Immunocytochemistry and immunohistochemistry. Model organisms: <i>E. coli, S. cerevisiae, D. discoideum,</i> Hydra. <i>C elegans, D. melanogaster,</i> Zebrafish, <i>A. thaliana,</i> etc. Emerging Model Organisms.	б
3.	Cell surface	Cell wall and extracellular matrix. Cell membrane: Structure and functions, Membrane proteins, lipids and sugar modifications for different membrane types. Ion channels. Transport across the membrane, Exo and Endocytosis Cell to cell interaction.	6
	Structure and function of cell organelles along with difference in membrane composition.	Cytosol, Golgi bodies, ER (smooth and rough), Ribosomes, Cytoskeleton structures (Actin and cell movements, Microtubules and cell division, cytoskeleton dynamics and treadmilling), Nucleus (Structure of nuclear envelop, internal organization, nucleolus), Mitochondria (Structure, respiratory chain complexes, ETC, ATP synthase structure, Mitochondrial biogenesis, maternal inheritance, anterograde and retrograde signaling), Chloroplasts, Lysosomes, Peroxisome. Different diseases in relation to cell organelles.	10
4.	Cell division (prokaryotic and eukaryotic) and cell cycle	Fission and fusion, budding. Eukaryotic Cell cycle stages (mitosis and meiosis), Nuclear organization during mitosis, Events of M phase, Regulators of cell cycle, Fertilization, Cell proliferation during development.	5
	Protein transport	Transportation of proteins into the nucleus and mitochondria, Vesicular transportation.	3
5.	Cell receptors and signal transduction	Signaling molecules and their receptors. Function of surface and intracellular receptors, Different pathways of signal transduction, Signaling in development and differentiation.	4
	Programmed cell death and Cellular senescence	Apoptosis (intrinsic and extrinsic pathways), Necrosis, Necroptosis, Autophagy (macroautophagy and microautophagy), Cellular senescence, Methods to study cell death.	4
6.	Basic Concepts in developmental biology	Cell lineage and cell-cell interaction, Embryonic induction, Types and importance of stem cells, Cell	4

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY				
	differentiation, Causes of abnormal cell division and neoplastic transformation			
Total Number of Lectures				

METHODOLOGY

The course would be taught through lectures, demonstrations and practical classes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Molecular Biology of the Cell; B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter; 6th Edition, Garland Sciences, 2015.
- 2. Molecular Cell Biology; H. Lodish, A. Berk, Chris A. Kaiser, Monty Krieger , Anthony Bretscher, Hidde Ploegh, Angelika Amon, Kelsey C. Martin; 8th Edition; 2016
- 3. The Cell: A Molecular Approach; Geoffrey M. Cooper, Robert E. Hausman; 7th Edition ; Sinauer Associates, Inc., 2015.

PRACTICAL IN CELL BIOLOGY(2 Hrs. PER WEEK)MARKS 50

LIST OF PRACTICALS

1. Introduction to the instruments used in cell biology (Microscope, Biosafety Cabinets, Incubators, Centrifuges, Pipettes)

- 2. Study of different cell types under microscope
- 3. Slide preparation and staining (plant)
- 4. Blood Smear Preparation and differential staining.
- 5. Buccal smear Identification of Barr Body
- 6. Mitosis in Onion Root-Tip Cells
- 7. Meiotic cell division in grasshopper testis/Hibiscus flower buds

Sr. No	Name of	Learning objective	References				
	Experiment						
1.	Introduction to the instruments used in cell biology (Microscope, Biosafety Cabinets, Incubators, Centrifuges, Pipettes)	To get acquainted with the instruments and SOP for the various instruments. This Exercise focuses on how to develop a working knowledge of the microscopes and their uses. Students should identify the different parts of the Microscope and safe handling.	Fundamentals of Light microscopy And electronic Imaging by D. B. Murphy, John Wiley & Sons, Inc., Publication. 2001				
2.	Study of different cell types under microscope	Students should be able to differentiate between prokaryote, eukaryote cells Should be able to differentiate between plant and animal cells Should be able to differentiate between cells from different tissues					
3.	Slide preparation and staining (plant)	Cross-sectioning of monocot and dicot plant root, stem and leaf	A Text-Book of Histology Descriptive and Practical. For the Use of Students by A.				

		Staining and slide preparation Identification of different	Clarkson, 2 nd edition, Science Direct, 2013.
		anatomical features	Methods in plant histology by C.Joseph, 3 rd edition, The
		Preparation of permanent slide	university of chicago press Chicago, Illinois, The Baker & Taylor Company, 2007
4.	Blood Smear Preparation and differential staining.	A classical method for identification of blood cell preparation.	Dacie and Lewis Practical Haematology by B. Bain, I. Bates, M. Laffan, 11 th edition, Elsevier, 2016.
5.	Buccal smear – Identification of Barr Body	A quick cytological method for identification of sex in mammals- an extreme case of chromosomal condensation.	Cytological Assessment of Barr Bodies Using Aceto-Orcein and Papanicolaou Stains in Buccal Mucosal Smears and Their Sex Estimation Efficacy in an Indian Sample, D. U. Angadi P. V. Hallikerimath and S. Kale, <i>Acta</i> <i>Cytologica</i> , 57:516-521, 2013 (DOI:10.1159/000353216)
6.	Mitosis in Onion Root-Tip Cells	To study mitosis using Onion root tip cells.	Science Volume 61 of Methods in cell biology by Conly L. Rieder. Academic Press, 1999.
7.	Meiotic cell division in grasshopper testis/Hibiscus flower buds	To perform Meiotic cell division in the given sample	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BS 202.1	1	2	3	-	1	1	-	-	-	1	-	-	3	2	1
BS 202.2	3	3	3	-	3	2	-	-	-	2	2	3	1	3	1
BS 202.3	3	3	3	-	3	2	-	-	-	2	-	3	3	1	1
BS 202.4	3	3	3	3	3	2	-	-	-	2	-	3	3	1	1

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY											Dr. D.Y. PATI	PL IL VIDYAPEETH, PM MED UNIVERSITY)	J		
BS 202.5	3	3	3	3	3	3	-	-	2	2	-	3	3	1	1
BS 202.6	3	3	2	3	3	3	2	3	3	2	-	3	2	2	3

COURSE: Maths II: STATISTICS					
COURSE CODE: BS 201	L	Т	Р	Hr	C
MARKS: 100	2	0	2	4	3

OBJECTIVE

The objective of the course is to familiarize the student with basic concepts in mathematics & statistics.

COURSE OUTCOME

CO No.	At the end of the course, the learner should be able to:
BS 203.1	Define determinants and matrices for solving simultaneous equations
BS 203.2	Outline the principles of complex numbers and numerical methods
BS 203.3	Use the set theory, probability and probability distribution for solving statistical problems
BS 203.4	Apply the concept of correlation, regression and various hypothesis testing methods to statistical data

PREREQUISITES

Students should be familiar with school level mathematics to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

COURSE DESCRIPTION

Unit	Topics	Detail Syllabus	No. of Lectures
1	Determinant & Matrices :	Determinant: Definition & expansion of	06
		determinant of order 2 and 3, Cramer"s rule	
		Matrices: Definition of Matrix of order mxn and	
		types of Matrices, Algebra of Matrices, Transpose	
		of a Matrix, Inverse of a Matrix by adjoin method,	
		Solution of simultaneous equations	
2	Complex Number :	Definition of Complex number, Cartesian, polar,	03
		exponential forms of complex number.	
		Algebra of Complex Number	
		De - Moiyre"s theorem (without proof) and simple	
		problems.	
	Numerical Methods :	Numerical Solution of Simultaneous Equations :	03
		Gauss elimination method	
		Iterative Methods Gauss Seidal and Jacobi"s	
		Method	
3	Set Theory and Probability	Set Theory	06
		Probability: Definition of random experiments,	
		sample space, events, occurrence of event and types	

		of events, Definition of probability, addition and	DEEMED UNIVERSITY)
		multiplication theorem of probability.	
		Probability Distribution: Binominal Distribution,	
		Poisson"s Distribution, Normal Distribution	
	Statistics	Frequency Distribution	01
		Measures of Control tendency (For Raw, Ungroup	03
		& group Data)	
		Measures of Dispersion: Rauge, Variance,	02
		Coefficient of Cariance, Standard Derivation	
4	Correlation & Regression	Correlation & Regression	02
	Hypothesis Testing	ANNOVA, Chi square Test	03
	F-Test	F-Test	01
	Total N	umber of Lectures	30

METHODOLOGY

The course will be covered through lectures supported by practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1. Ravid, R. (2024). Practical statistics for educators. Rowman & Littlefield.
- 2. Dr. S.P.Gupta, 46th Edition, 2021, ISBN 93-5161-176-9 . Statistical Methods
- 3. Bruce, P., Bruce, A., & Gedeck, P. (2020). *Practical statistics for data scientists:* 50+ essential concepts using R and Python. O'Reilly Media.
- 4. S. G. Gupta. 17th edition, Himalaya Publications 2000. Fundamentals of Statistic
- 5. Van Emden, H. F. (2019). Statistics for terrified biologists. John Wiley & Sons.

PRACTICAL IN Maths II: STATISTICS (2 Hrs. Per Week)

Marks: 50

LIST OF PRACTICALS

- 1. Introduction to statistical computing.
- 2. Exploring statistical packages such as SYSTAT/ SPSS/ SAS.
- 3. Biological data handling in statistical package.
- 4. Data exploration with graphs.
- 5. Computation of measures of central tendency.
- 6. Computation of measures of dispersion.
- 7. Computation of correlation coefficient.
- 8. Curve fitting, construction of regression models and computation of regression coefficient.
- 9. Analysis of variance (ANOVA)

Sr. No.	Name of experiment	Learning objectives
1.	Introduction to statistical	Understand concepts and ideas behind
	computing.	mathematical and statistical computing.
2.	Exploring statistical packages such as SYSTAT/ SPSS/ SAS.	Explore statistical package environment: features, workspace, menu, and user
	as 5151A1/ 5F55/ 5A5.	interface.
3.	Biological data handling in statistical package.	Recognize the difference between biological and other data.
4.	Data exploration with graphs.	Draw various types of graphs.
5.	Computation of measures of central tendency.	Learn how to compute and interpret various measures of central tendency.
6.	Computation of measures of dispersion.	Learn how to compute and interpret various measures of dispersion.
7.	Computation of correlation coefficient.	Learn how to compute and interpret correlation coefficient.
8.	Curve fitting, construction of regression models and computation of regression coefficient.	Understand data modeling and learn to visualize and measure relationship between variables by constructing various models.
9.	Analysis of variance (ANOVA).	Understand and perform ANOVA test.

References:

- 1. Fundamental of Statistics by S.C. Gupta, 17th edition, Himalaya Publications, 2000 .
- 2. Fundamentals of Mathematical Statistics by S.C. Gupta and Kapoor, S. Chand Publications, 1987.
- Fundamental of Biostatistics by B. Rosner, 7th edition, Cengage Learning Publisher, 2010.
- 4. Biostatistics: Bare essentials by G. R. Norman and D. L. Streiner, McGraw-Hill Medical Publisher, 2014.
- 5. Statistical methods in Bioinformatics by W. J. Ewens and G. R. Grant, 2nd edition, Springer, 2005.
- 6. The Practice of Business Statistics (w/CD) by Manish Sharma and Amit Gupta, Khanna Publishing House, 2010

PRACTICAL EVALUATION SCHEME	
Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BS 203.1	1			2	1		1	1			2	1	2	1	
BS 203.2	2				1		1	2				1	2	2	
BS 203.3	2			2	2		2	2			2	2	2	2	1
BS 203.4	1	2		2	1	1	2	1	2		2	1	2	2	1

COURSE: ENGINEERING MECHANICSCOURSE CODE: BT 203LMARKS: 100 (Theory 50 + Practical 50)20243

OBJECTIVES:

The objective of the course is to familiarize the students with the basic concepts of engineering mechanics.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 203.1	Illustrate various force systems and their impacts using vector
D1 203.1	algebra
BT 203.2	Analyze the equilibrium of rigid bodies using free body diagram
D1 203.2	and apply the laws of friction
BT 203.3	Calculate impulse, momentum and impact of elastic bodies using
D 1 203.5	principles of kinematics
BT 203.4	Apply the concepts of mechanics in life sciences

PREREQUISITES:

Since the course is technical in nature the students must have the basic knowledge of Math and Physics.

COURSE DESCRIPTION:

Unit	Торіс	Detail Syllabus	No. of
			Lectures
1	Basics of Mechanics	Introduction, Unit and Dimensions, Laws of Mechanics,	3
		Vectors – Victorian representation of forces and moments,	
		Vector operations	
2	Statics of particles	Principal of statics, force systems, Principle of transmissibility,	6
		Resolution and Composition of forces, Resultant of concurrent	
		forces, Moment of a force, Resultant of parallel force system,	
		Couple	
3	Free body diagram	Free body diagram, Types of supports and their reactions,	7
		Requirements of stable equilibrium, Equilibrium of a particle,	
		Equilibrium of a particle in space, Equilibrium of rigid bodies	
		in two dimensions, Equilibrium of rigid bodies in three	
		dimensions, Types of beams-Simple and compound beams	
	Friction	Frictional Force, Laws of Coulomb friction, Simple Contact	3
		friction	
4	Dynamics	Basics of Kinetics and kinematics, Relative motion, Newton's	6
	kinematics	Law of Motion, Conservation of energy and Work Energy	
		Equation of particles. Impulse and Momentum, Impact of	
		elastic bodies, Direct central impact and coefficient of	

	restitution			
sics of omechanics	Basic concept of Biomechanics, Biomechanics of tissues, muscles, bones and ligaments, Applications	5		
Total Number of Lectures				

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1. Engineering Mechanics by Sanju Unadkat, Seventh edition, Tech-Max publications, 2012.
- 2. Engineering Mechanics by H.J. Sawant ,sixth Edition, Technical Publication ,2012.
- 3. Engineering Mechanics by DS Bedi, MP Poonia, Khanna Publications, New Delhi, 2018.

PRACTICALS IN ENGINEERING MECHANICS (2 Hrs. Per Week)

50 Marks

LIST OF PRACTICALS

- 1. Study of different force systems.
- 2. Study of Laws of coplanar forces: Triangle law, Parallelogram law, Polygon law
- 3. Study of equilibrium of forces in space.
- 4. Study of collision of elastic bodies.
- 5. Analysis of compound beam
- 6. Study of flywheel
- 7. Study of friction
- 8. To find coefficient of restitution

Sr. No.	Name of the experiment	Learning objective	Literature / Web links for reference and videos
1	Study of different force systems.	Students should able to learn different types of force systems and their visual representation.	Engineering Mechanics by S. Unadkat, 7 th edition, Tech-Max publications, 2012.
2	Study of Laws of coplanar forces a) Triangle law b) Parallelogram law c) Polygon law	Students should able to learn and prove 3 different laws for coplanar forces.	 Engineering Mechanics by H.J. Sawant, 6th edition, Technical Publication, 2012.
3	Study of equilibrium of forces in space.	Students should able to understand the concept of equilibrium, requirements for stable equilibrium.	
4	Study of collision of elastic bodies.	Students should able to learn law of conservation of momentum and concept of Impact.	
5	Analysis of compound beam	Students should able to identify different supports and their reactions. They should able to draw FBD of simple and compound beams.	
6	Study of flywheel	Students should able to learn basic concepts of dynamics, Moment of inertia.	

7	Study of friction	Students should able to learn basic concept of friction, its types.	(DEMED UNITEST)
8	To find coefficient of restitution.	Students should able to find coefficient of restitution for different materials.	https://physics.stackexcha nge.com/questions/172127 /the-coefficient-of- restitution-of-a-bouncing- ball

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 203.1	-	-	-	2	-	-	1	-	-	-	2	-	2	-	-
BT 203.2	-	-	-	2	-	-	1	-	-	-	2	-	2	2	-
BT 203.3	-	-	-	2	-	-	1	-	-	-	2	-	3	3	3
BT 203.4	3	1	1	3	3	3	3	3	1	1	3	3	1	1	3

COURSE: ENVIRONMENTAL SCIENCE COURSE CODE: BS 202 MARKS: 100

L T P Hr Cr 2 0 2 4 3

OBJECTIVE:

To familiarize the students with

- □ Problems related to environmental pollution, loss of natural resources, climate change, solid waste disposal, biodiversity and social issues due to environmental degradation.
- Develop clear understanding of biodiversity and its conservation.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BS 201.1	Demonstrate basic understanding of natural resources, ecosystem, and its structural and functional aspects
BS 201.2	Identify the measures to prevent environmental pollution and designstrategies for environment conservation
BS 202.3	Comprehend different socio-environmental issues and explain the dynamics of human population
BS 202.4	Explore environmental problems of local area and suggest sustainable solutions

PREREQUISITES

Since the course is very basic in nature there are no prerequisites.

COURSE DESCRIPTION

Unit	Торіс	Detail Syllabus	No. of Lectures
1	Natural Resources and associated problems	Land, water, food, forest, mineral and energy resources, their use, over-exploitation and conservation.	3
	Ecosystems	Concept, structure and function of ecosystem. Producers, Consumers and decomposers Energy flow in ecosystem. Ecological succession and pyramids, Food chains, food webs and ecological pyramids. Characteristic features of Forest, Grassland, Desert and Aquatic Ecosystems.	4
2	Environmental Pollution	Definition, Causes, Effects and control measures of Air, Water, Soil, Noise, thermal and Marine Pollution. Nuclear hazards and Solid waste management. Role of an individual in prevention of Pollution and Pollution case studies	6

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY						
	Biodiversity and its Conservation	Genetic, species and ecosystem diversity. Value of Biodiversity: social, ethical, aesthetic and option values. India as a mega diversity nation. Hotspots of Biodiversity. Threats to Biodiversity: Habitat loss, poaching of wildlife, man wild life conflicts. Endangered and Endemic species of India. Conservation of Biodiversity: in situ and ex situ conservation of biodiversity. Biodiversity act 2002	4			
3	Social Issues and the Environment	Urban problems related to energy. Water conservation, Rain water harvesting, and watershed management. Resettlement and rehabilitation of people. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation: Case studies. Environment protection Acts: Air (Prevention and control of Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. Environmental ethics: Issues and possible solutions. Public awareness	4			
	Human Population and Environment	Population growth. Population explosion- family welfare programs. Environment and Human Health. Human Rights. HIV/ AIDS and Women and Child welfare. Role of Information and Technology in environment & human health.	3			
4	Field work	Visit to a local area to document environmental assets River/forest/grassland/hill/mountain Visit to local polluted site- Urban/Rural/Industrial/Agricultural Study of Common plants, insects, birds. Study of simple ecosystems- pond, river, hill slopes, etc	4			
		Total number of lectures	30			

METHODOLOGY

The course would be taught through lectures, demonstrations and field work. The students will undertake field trip to sensitive hot spots in Western Ghats to observe and collect samples of Flora and Fauna for onthe-spot studies, collection and identification of specimens. These would be evaluated on the basis of report presented by the students

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1. Environmental Biology, K. Agarwal, Nidi Publ. Ltd. Bikaner, 2001.
- 2. The Biodiversity of India, B. Erach, Mapin Publishing Pvt. Ltd., 2002.
- 3. Hazardous Waste Incineration, R.C. Brunner, McGraw Hill Inc., 1989.
- 4. Marine Pollution, R.S. Cark, 5th edition, Clanderson press Oxford (TB), 2001.
- 5. A Textbook of Environmental Science by Rimpi Mehani Ne'e Chopra, Jyotsna, Khanna Publishers, New Delhi, 2017.
- 6. Environmental Studies by MP Poonia and SC Sharma, Khanna Publishers, New Delhi, 2017.
- 7. Elements of Environmental Polluton Control by O. P. Gupta, Khanna Publishers, New Delhi, 2016.

PRACTICAL IN ENVIRONMENTAL SCIENCE (2 Hrs. Per Week) MARKS 50

LIST OF PRACTICALS

1. To study physicochemical properties of soil (pH, conductivity, moisture content, carbonate content, salinity, porosity)

2. Identification and enumeration of zooplanktons and phytoplanktons as indicator of water pollution

- 3. To identify and characterize normal microflora in air, water and soil
- 4. Determination of MPN from water samples
- 5. Estimation of chlorine in drinking water using colorimetric method
- 6. Estimation of relative humidity of the atmosphere
- 7. Estimation of dissolved oxygen in the given water sample
- 8. Study the effects of pollutants (e.g., heavy metals) on flora

9. Determination of NO2 from the atmosphere by Colorimetric method using high volume sampler (Optional)

10. Determination of K2O value of soil by flame photometer (Optional)

Sr.	Name of the experiment	Learning objective	Literature/ Weblinks for
No.			reference and videos
1.	To study physicochemical properties of soil (pH, conductivity, moisture content, carbonate content, salinity, porosity)	To know about variations of soil properties and to determine their suitability for a particular purpose	 Soil Analysis by P. C. Bandyopadhyay Gene-Tech books, New Delhi, India. 2007. Handbook of Water Analysis by M. L. Leo, S. P. Nollet, S. P. Leen, De Gelder.
2.	Identification and enumeration of zooplanktons and phytoplanktons as indicator of water pollution	To differentiate polluted and non-polluted sites based on plankton data	 ^{3rd} edition, CRC Press, United Kingdom, Publisher: <u>Leen S. P.</u> <u>De Gelder</u>, 2013. A Microbiology laboratory Manual by J. G.
3.	To identify and characterize normal microflora in air, water and soil	To know presence of normal microflora within environment.	Cappuccino and N. Sherman, 10 th edition, Dorling Kindersley, Pearson Benjamin Cummings, 2014.
4.	Determination of MPN from water samples	Determine potability of water	 Principles and Practices of air pollution analysis by J. R.

			Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)
5.	Estimation of chlorine in drinking water using colorimetric method	Understanding of residual amount of chlorine in water as a health hazard	Mudakavi, I K International Publishing House Pvt. Ltd., New Delhi, India, 2010.
6.	Estimation of relative humidity of the atmosphere	To understand relationship between weather and humidity	
7.	Estimation of dissolved oxygen in the given water sample	To understand importance of BOD and COD	
8.	Study the effects of pollutants (e.g., heavy metals) on flora	To understand effect about pollution	
9.	Determination of NO ₂ from the atmosphere by Colorimetric method using high volume sampler (Optional)	To understand more about atmospheric condition	
10.	Determination of K ₂ O value of soil by flame photometer (Optional)	To understand about Quality of soil	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
3	3	2	2	1	-	-	2	3	2	2	1	2	1	2
3	3	1	2	2	2	2	3	3	1	2	2	2	2	1
2	3	2	2	1	2	2	2	3	2	2	1	2	2	2
2	3	2	1	1	2	3	2	3	2	1	1	3	2	2
	3 3 2	3 3 3 3 2 3	3 3 2 3 3 1 2 3 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 2 2 1 - - 3 3 2 3 3 1 2 2 2 2 3 3 1 2 3 2 2 1 2 2 2 3 3 1 2 3 2 2 1 2 2 3 2	3 3 2 2 1 - - 3 3 2 2 3 3 1 2 2 2 2 3 3 1 2 2 3 2 2 1 2 2 2 3 2 2	3 3 2 2 1 - - 3 3 2 2 1 3 3 1 2 2 2 2 3 3 1 2 2 1 2 3 2 2 1 2 2 2 3 3 1 2 2 2 3 2 2 1 2 2 2 3 2 2 1	3 3 2 2 1 - - 3 3 2 2 1 $\frac{2}{2}$ 3 3 1 2 2 2 2 3 3 1 2 2 2 2 3 3 1 2 2 2 2 2 3 2 2 1 2 2 2 3 3 1 2 2 2 2 3 2 2 1 2 2 2 3 2 2 1 2 2 3 2 2 1 2 2 2 3 2 2 1 2	3 3 2 2 1 - - 3 3 2 2 1 2 1 3 3 1 2 2 2 2 3 3 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 1					

COURSE: ENGINEERING GRAPHICS

COURSE CODE: – BT 204

MARKS: 100

OBJECTIVE:

To familiarize the students

- \Box basic engineering drawing formats.
- to take data and transform it into graphics drawings.
 to sketch and take field dimensions.

COURSE OUTCOME

CO No.	At the end of the course, the learner should be able to:
BS 204.1	Outline the various drawing formats used in engineering graphics
BS 204.2	Analyse detailed concepts of geometric tools, shapes and procedures
BS 204.3	Sketch various orthographic, auxiliary and isometric projections
BS 202.4	Identify lines and surfaces, interpret various views to apply these concepts in tissue engineering

PREREQUISITES

Since the course is very basic in nature, knowledge of mathematics is required.

COURSE DESCRIPTION

Unit Topic	Detail Syllabus	No. of Lectures
 Drafting Technology and Introduction to Any Drafting Software/Pack age 	Layout of drawing sheets, sizes of drawing sheets, different types of lines used in drawing practice, Dimensioning – linear, angular, aligned system, unidirectional system, parallel dimensioning, chain dimensioning, location dimension and size dimension. Tolerances – methods of representing tolerances, unilateral and bilateral tolerances, tolerance on linear and angular dimensions, geometrical tolerances. Symbols used on drawing, surface finish symbols, welding symbols. Advantages of using Computer Aided Drafting (CAD) packages, applications of CAD, basic operation of drafting packages, use of various commands for drawing, dimensioning, editing, modifying, saving and printing/plotting the drawings. Introduction to 3D primitives.	2

Total number of Lectures				
4	Interpretation of Given Views/Missing Views	Identification of lines/edges and surfaces, visualization of given orthographic views, adding a missing/third view, adding a sectional view, to convert a given view in to a sectional view.	2	
4	Isometric Projections	Isometric view, Isometric scale to draw Isometric projection, Non-Isometric lines, and construction of Isometric view from given orthographic views and to construct Isometric view of a Pyramid, Cone, and Sphere.	3	
	Auxiliary Projections	Auxiliary planes – Auxiliary Vertical Plane (AVP), Auxiliary Inclined Plane (AIP), symmetrical auxiliary view, unilateral auxiliary view, bilateral auxiliary view.	2	
3	Orthographic Projections	Reference planes, types of orthographic projections – First angle projections, Third angle projections, methods of obtaining orthographic view s by First angle method, Sectional orthographic projections – full section, half section, offset section.	2	
2.	Curves used in Engineering Practice	Ellipse, Parabola, Hyperbola, normal and tangents to these curves, Involute, Cycloid, Epi-cycloid, Hypo-cycloid, Archimedean Spiral, Helix on cone and cylinder.	7	

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1. Elementary Engineering Drawing, by D. Bhatt, 53rd edition, Chartor Publishing house, 2014.
- 2. Engineering Drawing by P.S. Gill, S.K. KAtaria & sons, 2009.
- 3. Engineering Graphics and Drafting by P.S. Gill, S.K. KAtaria & sons, 2009.
- 4. Machine Drawing by N.D. Bhatt, 50th Edition, Chartor Publishing house, 2014.

MARKS 50

PRACTICAL IN ENGINEERING GRAPHICS (2 Hrs. PER WEEK)

Five A2 (594X420mm) (Half imperial) size drawing sheet as detailed below:

- 1. Sheet No. 1: CURVES
 - o To draw any four curves mentioned in the detailed syllabus.
- 2. Sheet No. 2: ORTHOGRAPHIC VIEWS
 - o To draw two principal views, one sectional view for two objects.
- 3. Sheet No. 3: AUXILIARY VIEWS
 - o To draw auxiliary views from the given views for any two objects.
- 4. Sheet No. 4: ISOMETRIC VIEWS
 - o Two problems on Isometric views.
 - o (minimum one problem by using CAD software/package)
- 5. Sheet No. 5: INTERPRETATION OF GIVEN VIEWS/MISSING VIEWS
 - o Two problems on Interpretation of given views.
 - o (minimum one problem by using CAD software/package)

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
DC 204 1	2	2		1	1		1	2	2		1	1			1
BS 204.1	3	2	-	1	1	-	1	3	2	-	1	1	1	-	I
BS 204.2	2	1	-	2	2	-	2	2	1	-	2	2	2	1	1
BS 204.3	2	-	-	2	2	-	2	2	-	-	2	2	3	3	1
BS 202.4	3	2	2	2	3	3	3	3	2	2	2	3	3	3	2

COURSE: DISASTER MANAGEMENT COURSE CODE: HU-201 MARKS: 50

L T P Hr C 0 1 0 1 -

LEARNING OBJECTIVE:

- $\hfill\square$ To provide student an exposure to disasters, their significance and types.
- □ To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- □ To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- $\hfill\square$ To enhance awareness of institutional process in the country and
- □ To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

COUR<u>SE OUTCOM</u>E:

CO No.	At the end of the course, the learner should be able to:
HU 102.1	Interpret trends in disasters and their types
HU 102.2	Demonstrate the relationship between vulnerability, disasters, disaster prevention and risk reduction
HU 102.3	Sketch approaches of Disaster Risk Reduction with institutional arrangements
HU 102.4	Demonstrate rudimentary ability to respond to the surroundings with potential disaster response

COURSE DESCRIPTION:

Unit	Topics	Detail Syllabus	No. of Lectures
1	Introduction to	Concepts and definitions (Disaster, Hazard, Vulnerability,	04
	Disasters	Resilience, Risks)	
	Disasters: Clarification,	Differential impacts – in terms of caste, class, gender, age,	08
	Causes, Impacts	location, disability,	
	(Including social,	Global trends in disasters urban disasters, pandemics,	
	economic, political,	complex emergencies, Climate Change	
	environmental, health,		
	psychosocial, etc.)		
2	Approaches to	Phases, Culture of safety, prevention, mitigation and	08
	Disasters Risk	preparedness, community based DRR, Structural -	
	reduction	nonstructural measures, roles and responsibilities of	
		community, Panchayati Raj Institution / Urban Local	
		Bodies (PRIs/ULBs), states, centre and other Satke-holders	
	Inter-relationship	Factor affecting Vulnerabilities, differential impacts,	04
	between Disasters and	impact of Development project such as dams,	
	Development	embankments, changes in Land-ude etc. Climate Change	

		Adaptation. Relevance of indigenous knowledge,	(NIVERSITY)
		appropriate technology and local resources	
3	Disaster Risk in India	Hazard and Vulnerability profile of India	06
		Components of Disaster Relief : Water, Food, Sanitation,	
		Shelter, Health, Waste Management,	
		Institutional Arrangements (Mitigation, Response and	
		Preparedness, DM Act and Policy, Other related policies,	
		Plans, programmes and legislation)	
4	Project Work	Field Work, Case Studies	06
		Total Number of Lectures	36

METHODOLOGY

The course will be covered through lectures, project work & classroom discussion.

EVALUATION SCHEME (THEORY)

This course attendance is mandatory but university examination may not be conducted.

BOOKS RECOMMENDED:

- 1. Introduction in "Confronting Catastrophe' by A. David Oxford University Press, 2000.
- 2. Vulnerability in Disaster Discourse, by Andharia J. JTCDM, Tata Institute of Social Science working Paper no. 8, 2008
- 3. At Risk Natural Hazards, Peoples, Vulnerability and Disasters by Blaikie, P, Cannon T, Davis I, Wisner B, Rutledge. 1997
- 4. Introduction to International Disaster Management, C. P. Damon, 2007,
- 5. Disaster Management : A Disaster Manager's Handbook, Carter and Nick, Asian Development Bank, Manila Philippines, 1991.
- 6. Development and Disasters, Cuny, F., Oxford University Press, 1983.
- 7. Document on World Summit on Sustainable Development 2012
- 8. Govt. of India : Disasters Management Act 2005. Government of India, New Delhi
- 9. Government of India, National Disasters Management Policy, 2009.
- 10. Environmental Knowledge for Disasters Risk Management, A. K. Gupta, S. S. Nair, NIDM, New Delhi, 2011.

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
-	1	-	-	-	-	1	-	1	1	-	-	-	-	1
1	1	-	-	-	-	2	-	2	1	-	-	-	-	1
-	1	-	-	-	-	2	-	2	1	-	-	-	-	1
-	-	-	-	-	-	2	-	2	1	-	-	-	-	1
	- 1 -	- 1 1 1 - 1	- 1 - 1 1 - - 1 -	- 1 - - 1 1 - - - 1 - -	- 1 - - 1 1 - - - 1 - -	- 1 - - - 1 1 - - - - 1 - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

COURSE: INDIAN KNOWLEDGE SYSTEM: HISTORY OF INDIAN SCIENCE **COURSE CODE: BTIKS201** LT P Hr C

MARKS: 50

1 0 0 1 1

OBJECTIVE

The objective of the course is to familiarize students with the origin and development of science and technology in India.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTIKS201.1	Learn about science and technology during ancient, mediaeval, colonial and post- independence era of India
BTIKS201.2	Relate remarkable scientific discoveries and inventions by Indian rishis and innovators
BTIKS201.3	Recognize India's contribution in science and technology on a global scenario
BTIKS201.4	Identify notable Indian institutions and visionaries that contributed towards scientific and technological revolutions

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course.

COURSE DESCRIPTION:

Unit	Торіс	Detailed syllabus	No. of Lectures
1.	Introduction to Indian Knowledge System (IKS), definition, concept and scope of IKS	 1.1 Definition, Concept and Scope of IKS 1.2 IKS based approaches on knowledge paradigms 1.3 IKS in ancient India, <i>Gurukul</i> -based education system, <i>Viharas</i> and Universities 1.4 Significance of IKS in modern India 	2
2.	Science and technology in ancient India	 2.1 Diverse scientific fields advanced in ancient India including astronomy, mathematics (geometry, arithmetic, and algebra), engineering, agriculture and medicine; ancient Indian temples: engineering and architectural marvels. 2.2 Notable developments in metallurgy and chemistry: use of copper, iron and bronze in ancient India 	6

		(DEE	MED UNIVERSITY)
		2.3 Development of geosciences: geographical concepts in ancient Indian literature	
		2.4 Hydrology and water resources management in ancient India	
		2.5 Role of acoustics in Vedic sciences	
3.	Developments in science and technology during medieval India	 3.1 Scientific and technological advancements in medieval India; the influence of Islamic and European concepts; advancements in the field of mathematics, astronomy, and medicine. 3.2 Innovations in the field of agriculture: introduction of new crops and irrigation techniques. 	2
4.	Scientific advancements in colonial and post- independence era	 4.1 Scientific breakthroughs in pre-independent India 4.2 Contributions of Jamshedji Tata and Swami Vivekananda in nation building and scientific innovation. 4.3 Development of research organizations in modern India including CSIR, DRDO; Establishment of Atomic Energy Commission; Developments in space satellites 	2
5.	Notable scientists, innovators and visionaries of India: standing on the shoulders of giants	 5.1 Philosophy and Literature (e.g., Maharishi Kanad, Pingala) 5.2 Mathematics and Astronomy (Aryabhatta, Bhashkaracharya, Varahamihira and Brahmgupta) 5.3 Medicine and Yoga (Acharya Charak, Susruta, Maharishi Patanjali and Dhanwantri) 5.4 Scientists of Modern India including Srinivas Ramanujan, C V Raman, Jagdish Chandra Bose, S N Bose, Har Gobind Khurana, Homi J Bhabha, Vikram Sarabhai, M Visvesvaraya, Birbal Sahni, APJ Abdul Kalam, Yash Pal, Jayant Narlikar, CNR Rao) 5.5 Women in STEM including Anandibai Joshi, Janaki Ammal, Kamal Ranadive, Rajeshwari Chatterjee, Indira Hinduja) 	4
		TOTAL	16

METHODOLOGY

The course will be covered through lectures & assignments.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1. Mahadevan, B., Bhat Vinayak Rajat, Nagendra Pavana R.N. (2022), "Introduction to Indian Knowledge System: Concepts and Applications", PHI Learning Private Ltd. Delhi.
- 2. Kapoor Kapil, Singh Avadhesh (2021). "Indian Knowledge Systems Vol I & II", Indian Institute of Advanced Study, Shimla, H.P.

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

- 3. Acarya, P.K. (1996). Indian Architecture, Munshiram Manoharlal Publishers, New Delhi.
- 4. Sampad and Vijay (2011). "The Wonder that is Sanskrit", Sri Aurobindo Society, Puducherry.
- 5. Pride of India: A Glimpse into India's Scientific Heritage, Samskrita Bharati, New Delhi.
- 6. Datta, B. and Singh, A.N. (1962). History of Hindu Mathematics: Parts I and II, Asia Publishing House, Mumbai.
- Kak, S.C. (1987). On Astronomy in Ancient India, Indian Journal of History of Science, 22(3), pp. 205– 221.
- 8. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre, Mumbai.
- 9. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BTIKS201.1	-	-	-	-	-	1	-	-	1	1	-	-	-	-	-
BTIKS201.2	-	-	2	-	-	1	-	2	-	1	-	-	-	-	-
BTIKS201.3	1	1	1	-	-	1	1	-	1	-	-	-	-	-	-
BTIKS201.4	-	-	-	-	-	1	-	-	1	1	-	-	-	-	-

COURSE: APTITUDE BUILDING-II COURSE CODE: BTAEC201

MARKS: 50

L T P Hr C 0 0 2 2 1

OBJECTIVE

- □ To enhance the logical reasoning skills of the students and improve problem-solving abilities
- □ To strengthen the ability of solving quantitative aptitude problems
- \Box To enrich the verbal ability of the students for academic purposes

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTAEC201.1	Learn to defend and critique concepts of logical reasoning
BTAEC201.2	Develop expertise in solving problems of quantitative Aptitude
BTAEC201.3	Integrate and display verbal ability effectively
BTAEC201.4	Develop technical skills

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course.

COURSE DESCRIPTION

Sr no.	Practical/Training/Tests/Interviews	Contact Hours
1	Logical Reasoning	04
2	Reading Comprehension for placements	02
3	Quantitative Aptitude	04
4	Verbal Ability	04
5	Recruitment Essentials	04
6	Accuracy, Precision and Statistical Analysis	02
7	Biology, Engineering and Mechanics	02
8	Engineering Graphics-Anthropometry	02
9	Competitive Examination Preparation	02
10	Mock Interviews	02
11	Discussion session-Industry Experts/Academia Experts/Alumni	02

TOTAL

METHODOLOGY

The course will be covered through Lectures/Assignments/Practical/Training/Tests/Interviews

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Continuous Internal Assessmer	nt	20
Attendance		
Assignments/Practical/Training	g/Tests/Interviews	30
Total		50

BOOKS RECOMMENDED:

1. R. S. Aggarwal, (2017). Quantitative Aptitude for Competitive Examinations, 3rd (Ed.). New Delhi: S. Chand Publishing

2. ETHNUS, (2016). Aptimithra, 1st (Ed.). Bangalore: McGraw-Hill Education Pvt. Ltd.

3. Arun Sharma, (2016). Quantitative Aptitude, 7th (Ed.). Noida: McGraw Hill Education Pvt. Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BTAEC201.1	-	1	1	-	1	-	-	-	-	-	-	1	1	-	-
BTAEC201.2	1	1	1	-	-	-	-	-	-	-	-	-	1	-	-
BTAEC201.3	1	1	1	-	1	-	-	-	-	1	-	-	1	-	-
BTAEC201.4	1	1	1	-	1	-	-	-	-	-	-	-	1	-	-

SEMESTER III						
Course Code	Course Name	L	Т	Р	Hr	Cr
BT 301	Analytical Techniques	2	0	4	6	4
BT 302	Microbiology & Virology	2	0	4	6	4
BT 303	Genetics	3	0	2	5	4
BI 301	Concepts in Bioinformatics	2	0	4	6	4
BT 304	Biosafety, Bioethics & IPR	2	0	0	2	2
HU 301	Universal Human Values II	2	1	0	3	3
BTSEC301 (Skill enhancement course)	NPTEL/SWAYAM/MOOC online course (Based on the courses offered on the MOOCs platform at that point of time)	2	0	0	2	2
BTAEC301 (Ability Enhancement)	Aptitude Building-III (includes Competitive exam preparation, placement related sessions and alumni interactions and trainings)	0	0	2	2	1
	Total	15	1	16	32	24

COURSE: ANALYTICAL TECHNIQUES	
COURSE CODE: BT-301	L T P Hr C
MARKS: 150 (Theory 100 + Practical 50)	2 0 4 6 4

OBJECTIVE :

To create general understanding of centrifugation, chromatographic techniques, various spectroscopic techniques like absorption spectroscopy, fluorescence spectroscopy, Infra-red spectroscopy, Optical Rotatory Dispersion (ORD) & Circular Dichroism (CD) spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Electrophoretic techniques, and X-ray crystallography. They would also understand the importance of analytical tools in biotechnology & its applications in various industries.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 301.1	Explore various centrifugation techniques for separation of biological materials at analytical and preparatory level
BT 301.2	Demonstrate the basic and advanced knowledge of various spectroscopic techniques for the analysis of biomolecules
BT 301.3	Employ various chromatographic techniques for purification of biomolecules
BT 301.4	Use different electrophoretic techniques for characterization of biomolecules
BT 301.5	Explain X-ray crystallography for 3D structure determination
BT 301.6	Apply Surface Plasmon Resonance and Isothermal Titration Calorimetry for studying intermolecular interactions

PREREQUISITES:

This is an introductory course. School level knowledge of physics is sufficient. There are no prerequisites.

Unit	Торіс	Detail Syllabus	No. of Lectures
1.	Centrifugation	Introduction: Basic Principle of Sedimentation Types of centrifuges: Ultracentrifuge, Design and their working principle	4
2.	Spectroscopy: (i) Absorption Spectroscopy	Types of Rotors, Wall-effectSimple theory of absorption of light by molecules,Chromophore and terminologies associated with absorption ofmoleculesThe Beer-Lambert Law and its deviations	4

COURSE DESCRIPTION

D PU
Dr. D.Y. PATIL VIDYAPEETH, PUNE

		Dr. D.Y. PATIL VIDY (DEEMD UNIV	APEETH, PUNE ERSITY)
	(ii) Fluorescence Spectroscopy	Single and double beam spectrophotometers for measuring Visible and Ultraviolet light: Instrumentation and Parameters measured in absorption Spectroscopy Factors affecting the absorption properties of a chromophore Empirical rule for the absorption spectra of biological macromolecules Chemical Analysis by absorption spectroscopy using Visible and Ultraviolet light Structural studies of Proteins using absorption of Ultraviolet light Structural studies of DNA using absorption of Ultraviolet light Simple theory of Fluorescence Instrumentation and Technology of Fluorescence Spectroscopy Intrinsic Fluorescence measurements for information about the conformation and binding sites of proteins Extrinsic fluorescence measurements for information about the conformation and binding sites of proteins	2
	(iii) Infrared Spectroscopy	Infrared Spectroscopy: Basic Principle Instrumentation and Technology of Infrared Spectroscopy Information in Infrared Spectra and Applications of Infrared spectroscopy	2
	(iv) Optical Rotatory Dispersion (ORD) & Circular Dichroism (CD)	Theory of Optical Rotatory Dispersion (ORD) & Circular Dichroism (CD) Relative values of ORD and CD measurements, Advantages of CD over ORD Instrumentation for measuring ORD and CD	2
	(v) Nuclear Magnetic Resonance (NMR) Spectroscopy	Applications of ORD and CD Nuclear Magnetic Resonance (NMR) Spectroscopy : Principle Basic Instrumentation of NMR Spectrometer Applications of NMR Spectroscopy	2
	(vi) Mass spectrometry	Mass spectrometry: Basic Principle Instrumentation and main components of mass spectrometers Ionization source, Mass analyzers, and Detectors 4. Applications of Mass Spectrometry	2
3.	Chromatography	Partition Chromatography: Simple Theory, Concept of theoretical plates Adsorption Chromatography: Simple Theory & Types Operations of columns : Terminologies and concept Elution : Types of elution methods Supports : Concept of mesh size and mesh screen Paper Chromatography : Principle, Experimental Procedure, R_f value calculation, Ascending and Descending paper chromatography, 2-D paper chromatography Thin Layer Chromatography: : Principle, Experimental Procedure, R_f value calculation, Advantages of Thin layer chromatography over paper and column chromatography Gas-Liquid Chromatography: Principle, Basic set up of Gas- liquid chromatography	8

		Dr. D. 1. PAIL DV (10 PAP)	III)
		Gel Chromatography (molecular-sieve chromatography):	
		Simple Theory, Materials (dextran, agarose and	
		polyacrylamide gels), Advantages of gel chromatography,	
		Estimation of molecular weight and applications of gel	
		chromatography	
		Ion-Exchange Chromatography: Principle, Properties of Ion	
		Exchangers, Choice of Ion Exchangers, Technique and	
		application of Ion Exchange chromatography.	
		High-Performance of Liquid Chromatography (HPLC):	
		Principle, Application of pressure in HPLC, Advantages and	
		uses of HPLC.	
		Affinity Chromatography: Principle, Methods of Ligand	
		immobilization (Cyanogen-bromide-activated agarose,	
		Aminoethyl- and hydrazide-activated polyacrylamide), uses of	
		affinity chromatography	
4.	Electrophoresis	Electrophoresis : General Principle, Agarose and	3
	_	Polyacrylamide gels	
		Sodium dodecyl sulfate-polyacrylamide gel electrophoresis	
		(SDS-PAGE), Principle of separation, Techniques and	
		molecular weight estimation via SDS-PAGE	
		Iso-electric focusing (IEF): Principle, Technique and	
		application	
		2-D PAGE: Steps involved in 2-D PAGE, application in	
		proteomics	
		Pulse-field gel electrophoresis: Principle, Technique and	
		Application	
		Capillary electrophoresis: Principle, Technique and Application	
5.	X-ray	Interaction of X-ray with matter: Absorption, Scattering and	2
	crystallography	diffraction (Bragg' s Law)	
		Preparation of crystals : Hanging and sitting drop vapor	
		diffusion methods	
		X-ray diffraction methods	
		Application of X-ray Diffraction in Crystal structure	
6.	Techniques for	Surface Plasmon Resonance (SPR) Spectroscopy : Principle,	1
	Intermolecular	Technique & Application	
	Interactions	Isothermal Titration Calorimetry (ITC) : Principle, Technique &	
		Application	
		Total Number of Lectures	30

METHODOLOGY:

The course will be covered through lectures supported by Practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 min	30
Total		50

- 1. Physical Biochemistry, Applications to Biochemistry and Molecular Biology, D. Freifelder, 2nd edition, W.H. Freeman and Company, New York, 1992.
- **2.** Biophysical Chemistry Principles and Techniques by A. Upadhyay, K. Upadhyay & N. Nath, 4th edition, Himalayan Publishing House. 2005.
- 3. Instrumental Methods of Chemical Analysis, G. R. Chatwal and A. K. Sham, 5th edition Himalaya Publishing House, 2005.
- 4. Instrumental Analysis, D. A. Skoog, F. J. Holler, S. R. Crouch, 11th edition, Brooks/Cole, a part of Cengage Learning, 2012.

PRACTICAL IN ANALYTICAL TECHNIQUES (4 Hrs. Per Week) MARKS: 100

LIST OF PRACTICALS

1. Lab orientation, acquaintance with infrastructure and instruments.

2. Preparation of various common buffers such as Phosphate buffer saline (PBS), Tris buffer saline (TBS), Tris acetate buffer

3. To study and understand the process of dialysis

4. Separation of various amino acids using paper chromatography and calculation of retention factor (Rf) value

5. Separation of various amino acids using Thin Layer chromatography (TLC) and calculation of Retention factor (Rf) value

6. To study the elution profile of given proteins (e.g. BSA, ovalbumin, lysozyme) on Sephadex G-50 / G-100 column

- 7. To study and determine the functioning of high-performance liquid chromatography (HPLC)
- 8. Estimation of protein by various methods such as Lowry's and Bradford.
- 9. To find out the concentration of given bovine serum albumin (BSA) solution in mg/ml.

10. To estimate the molecular weight of given protein using Sodium dodecyl sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE)

11. Centrifugation: Cell pelleting, sub-cellular fractionation of cell extract, handling of various type of centrifuges.

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
1	Lab orientation,	Developing competence and encourage hands on	1. Physical
	acquaintance with	usage and maintenance of facilities and equipment's.	Biochemistry,
	infrastructure and	SOPs and safety practices.	Applications to
	instruments.		Biochemistry and
2.	Preparation of	To understand the preparation of various common	Molecular
	various common	buffers and its use in biological system,	Biology, D.
	buffers such as	To understand the concept of molarity, normality	Freifelder, 2 nd
	Phosphate buffer	etc., Measurement of pH,	edition, W.H.
	saline (PBS), Tris	To understand, why a particular buffer is preferred	Freeman and
	buffer saline (TBS),	for a particular range of pH	Company, New
	Tris acetate buffer		York, 1992.

	Dr. D.Y. PATIL VIDYAPEETH, PUNE			
Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos	
3.	To study and understand the process of dialysis	Knowhow of preparation and usage of dialysis bag. Application of dialysis process, molecular weight cut off and desalting of proteins. REFER:	2. An introduction to practical Biochemistry, 3 rd edition by D. T.	
4.	Separation of various amino acids using paper chromatography and calculation of retention factor (R _f) value	To understand the principle of partition chromatography, technique of paper chromatography and calculation of R_f value of given unknown amino acids using the standard amino acids.	 Plummer, Tata McGraw-Hill, 2004. 3. Laboratory manual in Biochemistry by J. Jayaraman, 	
5.	Separation of various amino acids using Thin Layer chromatography (TLC) and calculation of Retention factor (R _f) value	To understand the principle of partition chromatography, techniques of thin layer chromatography and calculation of R _f value of given unknown amino acids using the standard amino acids.	J. Jayaraman, New Age International (P) Limited, Publishers, 2011. 4. Introductory Practical Biochemistry by S.K. Sawhney	
6.	To study the elution profile of given proteins (e.g. BSA, ovalbumin, lysozyme) on Sephadex G-50 / G- 100 column	 To know the preparation of the matrix, column packing, calculation of the bed volume, void volume and flow rate etc. To determine the elution profile of given protein by taking absorbance at 280 nm and to understand the principle of molecular- sieving. Various application, desalting, protein separation etc. 	 and R. Singh, 2nd edition, Narosa Publishing House, 1999. 5. Calbiochem buffer booklet 	
7.	To study and determine the functioning of high performance liquid chromatography (HPLC)	 To understand the principle of HPLC and functioning of the various parts of HPLC system. To study the elution profile of the BSA using gel filtration column (on TSK-GEL gel filtration column from Tosoh Bioscience) 		
8	Estimation of protein by various methods such as Lowry's and Bradford.	To understand the principle of method, preparation of calibration curve with standard protein and calculation of concentration of unknown protein sample.		
9.	To find out the concentration of given bovine serum albumin (BSA) solution in mg/ml.	 What is percent extinction coefficient? What is the percent extinction coefficient of BSA and standard proteins? How will you calculate the concentration of given protein solution using percent extinction coefficient in mg/ml? 		
10.	To estimate the molecular weight of given protein using Sodium dodecyl sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE)	 1.To study the principle and technique of SDS- PAGE for the separation of proteins 2. To check the purity of the protein using SDS- PAGE 3. Preparation of the standard curve (using standard protein provided) for estimation molecular weight of protein. 		

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
11.	Centrifugation:	1. To understand the basics of centrifugation.	
	Cell pelleting, sub-	2. Demonstration of various type rotors, their	
	cellular fractionation	function and use.	
	of cell extract,	3. Demonstration of functioning of various types of	
	handling of various	centrifuges.	
	type of centrifuges.		

PRACTICAL EVALUATION SCHEME

١

Examination	Marks
Internal (Continuous) assessment	40
End semester examination:	60
Total:	100

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 301.1	2	-	-	3	3	3	2	2	-	-	3	3	2	1	1
BT 301.2	2	-	-	3	3	-	3	2	-	-	3	3	2	1	1
BT 301.3	2	-	-	3	3	-	3	2	-	-	3	3	2	1	1
BT 301.4	2	-	-	3	2	-	3	2	-	-	3	2	2	1	1
BT 301.5	2	-	-	-	2	-	2	2	-	-	-	2	1	1	1
BT 301.6	1	-	-	-	2	-	3	1	-	-	-	2	1	1	1

COURSE: MICROBIOLOGY AND VIROLOGY COURSE CODE: BT 302 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 2 0 4 6 4

OBJECTIVES:

The objective of the course is to familiarize the students with microorganisms and viruses, their structures, diseases caused by bacteria and viruses and their control.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 302.1	Operate basic and advanced microscopes to identify and differentiate prokaryotes and eukaryotes based on their structure and characteristics
BT 302.2	Demonstrate the processes involved in the replication and survival of bacteria and viruses and their interaction with the environment and hosts
BT 302.3	Employ different methods for controlling the growth of microorganisms in physical and biological settings
BT 302.4	Evaluate microbial diseases and infections in humans and their pathogenesis
BT 302.5	Characterize bacteriophages, plant and animal viruses using basic and advanced methods
BT 302.6	Demonstrate the growth and differentiation of fungi and study their industrial applications

PREREQUISITES:

Since the course is very basic in nature, school level knowledge in biology is sufficient to take the course and there are no prerequisites.

COURSE DESCRIPTION

Unit	Торіс	Detail Syllabus	No. of	
			Lectures	
1	Introduction to	Scope and history of Microbiology.	4	
	Microbiology	Characterization, classification and identification		
		of microorganism. Microscopic examination		
		(Staining and microscopic techniques)		
2	Microorganism-Bacteria	Morphology and fine structure of bacteria. Cell	5	
		wall structure in details. Cultivation of bacteria.		
		Reproduction and growth. Growth kinetics.		
		Isolation and preservation.		
	The Viruses	Discovery, virus structure, classification, viral	4	
		replication cycle, detection and enumeration of		
		viruses, virus cultivation in lab, viriods, prions.		
3	Control of Microorganisms	Control of By physical and chemical agents. Role	5	
		of antibiotics and chemotherapeutic agents		

Total Number of lectures				
	organism-Fungi.			
	Eukaryotic micro-	application of fungal cultures.		
6.	The major group of	Growth and differentiation in fungi, Industrial	1	
		requiring DNA intermediate for synthesis.		
		and DNA and ssDNA, RNA tumor viruses		
	Animal Viruses	Viruses containing ss(+) RNA, ss(-) RNA, ds RNA	3	
		fruits and vegetables		
	Plant Viruses	Nomenclature and classification, viruses infecting	2	
		DNA phages and RNA phages.		
5	Bacteriophages	Morphology, reproduction of ds DNA phages, ss	2	
		system, respiratory, and digestive system.		
		nervous system, cardiovascular & lymphatic		
	Human diseases	lifestyle. Microbial diseases of skin and eye,		
4	Micro –organisms and	Multiple drug resistant bacteria and their biofilm	4	

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

- 1) Microbiology: An introduction, G.J. Tortora, B.R. Funke, C.L. Case, 5th Edition, Benjamin Pub. Co. NY, 1992.
- 2) Medical Bacteriology, N.C. Dey, and T. K. Dey, Allied Agency, Calcutta, 17th Edition, 1988.
- 3) Text book of microbiology, R. Ananthnarayana, and C.E. Jayaram Panikar, 5th edition, Orient Longman, 1996.
- Fields Virology D. Knipe and P. Howley. Vol.1 and 2- 4th Edition. Lippincott-Raven Publishers, 2006.
- 5) Fundamentals of Molecular Virology, N. H. Acheson 2nd Edition. Wiley Publisher, 2011.

PRACTICAL IN MICROBIOLOGY AND VIROLOGY (4 hrs per week) Marks 100

LIST OF PRACTICALS

- 1. Introduction to Microscopy
- 2. Introduction to Microbiology Lab instruments

3. Introduction to Microbiology Lab practices- Preparation and autoclaving of different type lab media, Preparation of Petri plate and slant. Handling and Examining Cultures

4. Isolation of bacteria and study bacterial colony characteristics

5. Microbial staining techniques- (a) Simple and (b) differential staining

6. Antimicrobial activity (natural and synthetic) testing using - Disc Diffusion Assay, Well diffusion assay.

7. MIC and MBC of antibacterial compounds.

8. Biofilm inhibition activity of synthetic antibiotics and plant derived natural compounds by microtitre plate assay.

9. Oligodynamic action of heavy metals.

10. Growth curve and how curve is disrupted by an antimicrobial agent.

11. Personal Hygiene – Effect of soap and disinfectant washing.

12. Isolation, identification of pathogens from clinical samples (urine, stool, pus), Demonstration of permanent slides of parasites

13. Distinguish between beneficial and harmful fungi and yeast, Isolation and microscopic observation of fungal cultures.

14. Enumeration of yeast cells by Neubaeur chamber. (Source of yeast – Oral thrush or vaginal thrush).

15. Demonstration of permanent slides – Tissue section with fungal infection.

16. Isolation of bacteriophages by Plaque method

17. Viral infection diagnosis - Cytopathic effect (CPE)

18. Visit to a viral research institute – such as NARI or NIV, Pune

Sr. No.	Name of the experiment	Learning objective					
Introduction to Microscopy							
1	Introduction to Microscopy	 a) To study the microscope and to observe different microorganisms like bacteria, protozoa, fungi and yeasts, algae – from natural habitat. b) Demonstration: Students will get familiar with different microscopic techniques such as TEM, SEM, Confocal-Microscopy, Flow cytometry and applications of these microscopic techniques in observation of bacterial biofilms. 					
	Int	roduction to Microbiology					
2	Introduction to Microbiology Lab instruments	To understand the principle and use of different microbiology lab instruments such as incubator, oven, colorimeter, autoclave, pH meter, water-bath, analytical balance, biosafety cabinet, refrigerator, deep freezer (-80°C), magnetic stirrer, vortex mixer.					
3 (a)	Introduction to Microbiology Lab practices- Preparation and autoclaving of different type lab media	 To become familiar with the necessary nutritional and environmental factors for culturing microorganisms in the laboratory. To understand the decontamination or sterilization process using an autoclave. To learn the procedures used in preparing media needed for culturing microorganisms. 					
3 (b)	Preparation of Petri plate and slant. Handling and Examining Cultures	 To learn the procedure used in preparing plate and slant for culturing microorganisms. To make aseptic transfers of pure cultures and to examine them for important gross features. 					
4	Isolation of bacteria and study bacterial colony characteristics	 To isolate pure cultures from a specimen containing mixed flora by using streak and spread plate technique. To study the different bacterial colony characteristics and to be able to differentiate between the general morphological types of bacteria. 					
5	Microbial staining techniques- (a) Simple and (b) differential staining	 To learn the value of simple stains in studying basic microbial morphology To learn the Gram-stain technique and to understand its value in the study of bacterial morphology 					
	Co	ontrol of Microorganisms					
6	Antimicrobial activity (natural and synthetic) testing using - Disc Diffusion Assay, Well diffusion assay.	To learn the agar disk and well diffusion technique for antimicrobial susceptibility testing of different synthetic drugs and plant derived natural compounds against different Gram positive and Gram-negative bacteria.					
7	MIC and MBC of antibacterial compounds.	To learn MIC and MBC assay for antimicrobial susceptibility testing of different synthetic drugs and natural compounds against different Gram positive and Gram-negative bacteria.					

		Dr. D.Y. PATIL VIDYAPEETH, PUNE (DE2MEDUNIVERSIT)
8	Biofilm inhibition activity of synthetic antibiotics and plant derived natural compounds by microtiter plate assay.	To learn the anti-biofilm activity of different drugs against different antibiotic resistance biofilm forming Gram positive and Gram-negative bacteria by using crystal violate microtitre plate.
9	Oligodynamic action of heavy metals.	To understand a biocidal effect of metals against different microorganisms, especially heavy metals, that occurs even in low concentrations.
10	Growth curve and how curve is disrupted by an antimicrobial agent.	To understand the growth pattern of bacterial cells and the effect of antimicrobial agents on its growth.
11	Personal Hygiene – Effect of soap and disinfectant washing.	To study the activity of some disinfectants and to learn the importance disinfectant in skin cleaning.
	Micro	bial organisms and diseases
12 (a)	Isolation, identification of pathogens from clinical samples (urine, stool, pus)	
12 (b)	Demonstration of permanent slides of parasites	To identify and study parasites such as <i>Entamoeba histolytica</i> , <i>Ascaris</i> spp. <i>Plasmodium</i> spp. and <i>Leishmania</i> spp.
		Mycology
13 (a)	Distinguish between beneficial and harmful fungi and yeast.	To become familiar with essential and disease-causing fungi and yeasts.
13 (b)	Isolation and microscopic observation of fungal cultures.	To become familiar with mycological culture techniques. To visualize and identify the structural components of fungi.
14	Enumeration of yeast cells by Neubaeur chamber. (Source of yeast – Oral thrush or vaginal thrush).	To determine the concentration of yeast cells in a given sample by Neubaeur chamber method.
15	Demonstration of permanent slides – Tissue section with fungal infection.	To become familiar with fungal infection to different human tissue.
	1	Virology
16	Isolation of bacteriophages by Plaque method	This assay is the most widely used technique for the isolation of virus and its purification, and to optimize the viral titers.
17	Viral infection diagnosis - Cytopathic effect (CPE)	To become familiar with morphological changes in cells caused by viral infections; the responsible virus is said to be cytopathogenic effect.

		(DEEMED UNIVERSITY)
18	Visit to a viral research	To become familiar with the research on animal viruses and viral
	institute – such as NARI or	diseases of human
	NIV, Pune	Preparation and production of antigens, diagnostic sera, vaccines, nucleic acid probe/s, etc.

BOOKS RECOMMENDED

- 1) Basic Practical Microbiology: A manual 2006 Society for General Microbiology (SGM), 2006.
- Medical Laboratory Technology by K. L. Mukherjee, Vol III, 10th Edition, Tata Mc. Graw-Hill Pub Co., 1988.
- 3) Antimicrobial Chemotherapy by D. Greenwood, 3rd Edition, Oxford University Press, 1995.
- Laboratory Manual and Workbook in Microbiology Applications to Patient Care by J. A. Morello, P. A. Granato, and H. E. Mizer, 7th Edition, The McGraw Hill Companies, 2003.
- 5) Textbook of Medical Laboratory Technology by P. B. Godkar and D. P. Godkar Vol 1 and 2 Bhalani Publishing, 2005.
- 6) Bergey's Manual of Systematic Bacteriology, Vol 1 and 2 Published by Springer, New York, 2015.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 302.1	-	-	-	2	2	-	3	-	-	-	2	2	3	1	1
BT 302.2	2	2	2	2	3	-	3	2	2	2	2	3	2	2	1
BT 302.3	2	2	2	2	2	2	3	2	2	2	2	2	2	2	2
BT 302.4	2	2	3	2	2	2	3	2	2	3	2	2	3	3	3
BT 302.5	2	2	2	2	2	3	3	2	2	2	2	2	2	2	2
BT 302.6	3	3	2	2	2	3	3	3	3	2	2	2	3	2	2

COURSE: GENETICS COURSE CODE: BT 303 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVE:

The students would understand Mendelian Genetics, its extensions, Non-Mendelian genetics, Sex determination, Genetic diseases, Syndromes, Chromosomal Aberrations, and Population Genetics

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 303.1	Outline the fundamental principles of inheritance
BT 303.2	Examine the extension and deviations in Mendelian inheritance patterns
BT 303.3	Illustrate different types of Non-Mendelian inheritance
BT 303.4	Analyse the chromosomal basis of inheritance, pedigrees, importance of cytogenetics and explain genetic mapping
BT 303.5	Discuss the genetic basis of sex determination in different organisms
BT 303.6	Demonstrate the principles of inheritance at the population level

PREREQUISITES:

Since the course comes under Basic sciences, school level knowledge of molecular biology and chemistry is required by the students to take up this course.

Unit	Торіс	Detail Syllabus	No. of Lectures
1	History of Genetics	Historical views of heredity	2
	Mendelian Genetics	 Mendel's experimental design. Mendelian laws and its application Punnett Square and forked line method. Probability Chi Square method. 	7
2	Extension of Mendelian laws	 Incomplete dominance and co-dominance. Multiple alleles. Gene Interactions that modifies Mendelian ratios: different type of epistasis, complementation analysis. Environmental effect on the expression of genes. Penetrance and expressivity, Pleiotropy. Position effect and genomic imprinting. 	7
3	Non-Mendelian inheritance	 Rules and examples of Non-Mendelian Inheritance: mitochondrial, chloroplast 	5

		Infectious heredity		
		□ Contrast to non-Mendelian inheritance		
		o (Maternal Effect)		
4	Chromosomal basis	Evidences for chromosome theory of	7	
	of inheritance	inheritance: Sex chromosomes, Sex linkage		
		and non-disjunction of X chromosomes.		
		□ Analysis of sex-linked and autosomal traits in		
		humans. Mendelian inheritance in Human;		
		Pedigree analysis		
	Cytogenetics and	Cytogenetic techniques.	6	
	linkage mapping	Variations in chromosome structure and		
		number and associated disorders.		
		□ Linkage and crossing over and gene mapping		
		in eukaryotes.		
5	Sex determination	□ Genotypic (Mammals, Drosophila, C. elegans),	6	
		genic and environmental mechanisms.		
		Mechanisms of dosage compensation in		
		Mammals, Drosophila, C. elegans		
6	Population genetics	□ Genetic structure of population: genotype and	5	
		allele frequencies		
		□ The Hardy-Weinberg Law.		
		□ Genetic variation: mutation, migration, natural		
		selection and random genetic drift.		
Total Number of Lectures				

METHODOLOGY: The course would be taught through lectures, demonstrations and practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Genetics A molecular approach, P. J. Russell., Pearson Benjamin Cummings, San Francisco Boston, New York, 2006.
- 2. Principles of genetics by Tamarin, 7th edition, The McGraw Hall Companies USA, 2002.
- 3. Essentials of genetics. By W. S. Klug, M. R. Cummings, Prentice-Hall Inc. USA, 1999.

PRACTICAL IN GENETICS (2 Hrs. Per Week)

MARKS: 50

LIST OF PRACTICALS

1. To study different model organisms (Escherichia coli, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, Saccharomyces cerevisiae and Arabidopsis thaliana)

2. Estimation gene frequency in population / To study distribution of dominant and recessive traits in the population

- 3. Mutants in Drosophila, monohybrid and dihybrid crosses in Drosophila,
- 4. Preparation of ideogram of human chromosomes and its analysis
- 5. To study the effect of genetic drift on sample population (Founder effect)
- 6. Sex Linked lethal in Drosophila
- 7. To identify auxotroph mutants in bacteria

Sr. No.	Name of the experiment	Learning objective	Literature/ Web links for reference and videos
1100			
	To study different model	To understand the importance	Genetics, A Conceptual
	organisms (Escherichia	of usage of model organisms	Approach by B. A. Pierce,
	coli, Drosophila	systems in genetic studies	5 th edition, , W. H. Freeman
	melanogaster,		& Company, 2013.
	Caenorhabditis elegans,		
1	Mus musculus,		
	Saccharomyces		Human Molecular Genetics
	cerevisiae and		by A. P. Read and T.
	Arabidopsis thaliana)		Strachan, 4 th edition, Taylor
2	Estimation gene	To understand Mendelian	& Francis, 2011.
	frequency in population /	inheritance patterns in	
	To study distribution of	Humans	
	dominant and recessive		
	traits in the population		
3	Mutants in Drosophila,	To understand Mendelian	
	monohybrid and dihybrid	inheritance patterns	
	crosses in Drosophila,		
4	Preparation of ideogram	To identify chromosomal	
	of human chromosomes	anomalies	
	and its analysis		

			DF. D.1. PATIL VID (DEEMED UN
5	To study the effect of genetic drift on sample population (Founder effect)	Understanding genetic drift in populations	
6	Sex Linked lethal in Drosophila	To understand sex linked inheritance	1
7	To identify auxotroph mutants in bacteria	To understand recombination in Bacteria	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
BT 303.1	_	1	2	3	2	-	3	_	1	2	3	2	2	1	1
BT 303.2	2	3	2	2	2	-	-	2	3	2	2	2	2	1	2
BT 303.3	2	2	2	-	2	-	-	2	2	2	-	2	2	1	2
BT 303.4	3	3	3	2	2	2	3	3	3	3	2	2	3	2	2
BT 303.5	3	3	3	2	2	2	3	3	3	3	2	2	2	1	1
BT 303.6	3	3	2	3	2	2	3	3	3	2	3	2	2	1	2

COURSE: CONCEPTS IN BIOINFORMATICS					
COURSE CODE: BI 301	L	Т	Р	Hr	С
MARKS: 150 (Theory 100 + Practical 50)	2	0	4	6	4

OBJECTIVE:

The objective of the course is to familiarize the student with basic concepts in Bioinformatics

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BI 301.1	Outline the scope of bioinformatics and use sequence and structural databases
BI 301.2	Identify the data retrieval tools and illustrate respective biological file formats to solve a research problem
BI 301.3	Analyse and interpret nucleotide and protein sequences based on biological tools such as BLAST, FASTA, CLUSTAL Omega
BI 301.4	Predict structures and apply data from secondary databases to assess various biological questions such as evolutionary relationship, structural and functional annotations

PREREQUISITES

Students should be familiar with school level mathematics and Biology to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

Unit			No. of
	Topics	Detailed syllabus	Lectures
1	Overview of	Overview and scope of Bioinformatics, Computers in	02
	Bioinformatics.	biology, medicine & different problems in biology.	
	Introduction to nucleic	NCBI, EMBL, DDBJ, UNIPROT, PDB, SCOP,	05
	acid and protein	CATH.	
	databases.		
2	Data acquisition,	File formats: GenBank, EMBL, PDB, PIR, ALN	03
	Database content,	Types of databases: flat file, relational, hierarchical,	
	structure and	network, object-oriented. Annotated sequence	
	annotation.	databases, Genome and Organism specific databases.	
	Retrieval of Biological	Data retrieval tools: Entrez, SRS etc.	02
	Data.		
3	Pairwise sequence	Sequence comparisons & alignment concepts,	04
	alignment.	Global Alignments – Needleman-Wunsch Algorithm	
		Local Alignments – Smith-Waterman Algorithm	

		macromolecular sequences.	
4	Phylogenetic analysis.	Building phylogenetic trees, evolution of	05
4	Introduction to	Prosite, Blocks, Prints, Pfam etc.Methods of phylogenetic analysis, cladistics,	03
	Profiles.	Derived Databases of patterns, motifs and profiles	
	Patterns, Motifs, and	Derivation and searching,	03
	searches.		
	Database similarity	FASTA, BLAST, PSI-BLAST algorithms.	02
	alignment.	& MUSCLE Algorithms, Applications of MSA.	05
	Multiple sequence	Paralogy, Xenology. Methods of multiple sequence alignment, CLUSTALW	03
		Introduction to Homology, Analogy, Orthology	

METHODOLOGY

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED

- 1. Ramsden, J. (2023). Bioinformatics: an introduction. Springer Nature.
- 2. Rastogi, S. C., Rastogi, P., & MENDIRATTA, N. (2022). Bioinformatics: Methods and Applications-Genomics, Proteomics and Drug Discovery. PHI Learning Pvt. Ltd.
- 3. Bioinformatics: Sequence and genome analysis by D. W. Mount, 2nd edition, CBS Publication, 2005.
- 4. Bioinformatics: Tools & Applications by D. Edward, J. Stajich and D. Hansen, Springer, 2009.
- 5. Bioinformatics: Databases, Tools & Algorithms by O. Bosu and S. K. Thurkral, Oxford University Press, 2007.
- 6. Bioinformatics: Methods and Applications Genomics, Proteomics and Drug Discovery by S.C. Rastogi, N. Mendiratta, P. Rastogi, PHI Learning Pvt. Ltd., 2015.

PRACTICAL IN BIOINFORMATICS

(4 Hrs. Per Week) MARKS: 100

LIST OF PRACTICALS

- 1. Introduction to Nucleic Acid and Protein Sequence Data Banks.
- 2. Introduction to Protein Sequence Data Banks.
- 3. Database Similarity Searches.
- 4. Database Similarity Searches.
- 5. Multiple sequence alignments.
- 6. Patterns, motifs and Profiles in sequences.
- 7. Genome Databases.
- 8. Protein Structure Databases.
- 9. Structure Visualization and Manipulation
- 10. Data Structure Algorithms

Sr.	Name of the	Learning objective	Literature/ Weblinks for reference
No.	experiment		and videos
1.	Introduction to Nucleic	Explore and Search Nucleic acid	www.ncbi.nlm.nih.gov/genbank/
	Acid and Protein	Sequence Database	
	Sequence Data Banks.	NCBI, EMBL, DDBJ.	https://www.ebi.ac.uk/embl/
			www.ddbj.nig.ac.jp/
2.	Introduction to Protein	Explore and Search and use	http://web.expasy.org/docs/swiss-
	Sequence Data Banks.	analysis tools at Protein	prot_guideline.html
	1	Sequence Database: UNIPROT	
		-	http://pir.georgetown.edu/
3.	Database Similarity	•BLAST	https://blast.ncbi.nlm.nih.gov/
	Searches.	•FASTA	https://www.ebi.ac.uk/Tools/sss/fast
			a/
4	Database Similarity	PSI-BLAST,PHI-BLAST	https://blast.ncbi.nlm.nih.gov/
	Searches.	algorithms	
5	Multiple sequence	Clustering algorithm	www.genome.jp/tools/clustalw/
	alignments.	CLUSTALW, Tree View,	5 51
	6	MUSCLE	
6	Patterns, motifs and	Study Derived Databases:	https://prosite.expasy.org/prosite_lin
	Profiles in sequences.	PROSITE, BLOCKS, Prints	<u>k.html</u>
		Pfam etc.	https://www.ncbi.nlm.nih.gov/pmc/a
			rticles/PMC102408/
7	Genome Databases.	Ensemble, TIGR, Flymine	http://plantta.jcvi.org/
			www.flymine.org/
8	Protein Structure	PDB, SCOP, CATH	
	Databases.		http://www.rcsb.org/pdb/home/home.do

			scop.mrc-lmb.cam.ac.uk/scop/
9.	Structure Visualization	Structure Visualization Tools:	https://pymol.org/
	and Manipulation	Pymol, RASMOL	
10	Data Structure	Data Structure Algorithms for	https://www.perl.org/
	Algorithms	gene, protein sequence	
		analysis.	

BOOK RECOMMENDATION:

Bioinformatics: A practical guide to Analysis of Genes & Proteins by A. D. Baxevanis and B. F. Francis Ouellette, 3rd edition, John Willey and sons, 2005

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
DI 201 1		2	2		2	2			-			2		1	
BI 301.1	3	3	3	-	3	3	-	-	2	2	-	3	1	1	-
BI 301.2	3	3	3	-	3	3	-	-	2	2	-		1	1	-
BI 301.3	3	3	3	3	3	3	-	-	2	2	1	2	3	2	2
BI 301.4	3	3	3	3	3	3	2	2	3	3	2	2	3	2	2

COURSE: BIOSAFETY, BIOETHICS AND INTELLECTUAL PROPERTY RIGHTSCOURSE CODE: BT 304LTPHrCMARKS: 5020022

OBJECTIVES:

The objective of the course is to make students learn about the legal, safety and public policy issues raised due to the rapid progress in Biotechnology and development of new products. The biotechnology students supposed to understand and follow the regulatory framework important for the product safety and benefit for the society. The students are given case history to discuss and express their views.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 304.1	Practice biological risk assessment in a laboratory and implement measures of protection though various levels of biosafety practices
BT 304.2	Outline various national and international guidelines related to biosafety and its implementation in biotechnology
BT 304.3	Comply with bioethical practices in biotechnological research
BT 304.4	Categorize intellectual property into patents, copyrights, Trademarks, Industrial designs, Trade secrets and Geographical Indications

PREREQUISITES:

This is an advance level course. Students must have an understanding of introductory undergraduate level course such as chemistry, biology, microbiology.

Unit	Торіс	Topic Detail Syllabus				
			Lectures			
1	Biosafety	Introduction and Development of Biosafety Practices and Principles	9			
		General lab requirements Definitions and Biosafety levels: 1,2,3,4 & Summery Biological safety cabinets: centrifuges, Shipment of biological specimens, Biological waste management, Decontamination, Biosafety manuals, Medical surveillance, Emergency response Risks and Assessment of Risks Biosafety at small scale and large-scale processes				
2	Safety	Biosafety for genetically engineered microbes, plants and animals	3			
2	Guidlines	National biosafety committees Biosafety and environment protection International conventions	5			

		Total Number of Lectures	30					
		Current status of IPR in India						
		International conventions and cooperation						
		isolated genes, microbes etc						
		IPR for Biotechnology, Patenting of transgenic organisms and						
		Protection.						
		Geographical Indications and Farmers rights & Plant variety						
	Rights	Copyrights, Trademarks, Industrial designs, Trade secrets,						
	Property	Patents						
-	Intellectual	Introduction and Types of Intellectual Property Rights	12					
		Case Studies and Final Considerations						
		considerations						
		Stem Cells, Eugenics, Christian faith, Human genome and religious						
		Human races, Trading Human Life, Human Cloning						
		Patent of genes						
		Genetic Privacy						
		Ethics and genetic engineering						
5	Bioethics	History and Introduction	6					

METHODOLOGY

The course will be covered through lectures. The students will be given problems and case histories to discuss and clear their problems. The students will be evaluated based on two class tests, lecture and lab attendance, class participation, write up and quizzes.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED:

- 1. Understanding Biotechnology by A. Borem, D. E. Bowen and F. R. Santos, 1st edition, Pearson Education Inc., 2003.
- 2. Biotechnology an Introduction by S. R. Barnum, Brooks/Cole; International Edition 2004
- 3. Biosafety and Bioethics by R. Joshi, Isha Books, Delhi, 2006.
- 4. Introduction to Bioethics by J. A. Bryant and L. B. la Velle Bryant, 1st edition, Wiley Blackwel Publishing, 2005.
- 5. Intellectual Property Rights by C.B. Raju, 1st edition, Serials Publications, 2007.
- 6. Law Relating to Intellectual Property by B. L. Wadehra, Universal Law Publishing CO., Fourth Edition, 2007.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 304.1	1	2	2	1	3	3	3	1	1	2	3	2	2	-	3
BT 304.2	1	2	3	2	2	2	3	1	1	2	3	2	2	-	3

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

SYLLAI	SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY												DU IDYAPEETH, PUNE	-	
BT 304.3	1	2	2	1	1	2	3	3	2	3	2	2	2	1	3
BT 304.4	1	2	2	2	2	2	2	1	2	3	3	1	2	1	3

COURSE: UNIVERSAL HUMAN VALUES 2: UNDERSTANDING HARMONYCOURSE CODE: HU 301LTPHrCMARKS: 10021033

HUMAN VALUES COURSES: During the Induction Program, students would get an initial exposure to human values through Universal Human Values -I. This exposure is to be augmented by this compulsory full semester foundation course.

OBJECTIVE: The objective of the course is four fold:

1. Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.

2. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence

- 3. Strengthening of self-reflection.
- 4. Development of commitment and courage to act.

COURSE OUTCOME

CO No.	At the end of the course, the learner should be able to:
HU 301.1	Develop a holistic perspective based on self- exploration about themselves (human being), family, society, nature and existence
HU 301.2	Acquire harmony in the self, family, society and nature
HU 301.3	Strengthen self-reflection and develop commitment and courage to act responsibly
HU 301.4	Utilize the professional competence for augmenting universal human values

PRE-REQUISITES:

None. Universal Human Values 1 (Desirable)

Unit	Topic	Detail Syllabus	No. of
			Lectures
1	Introduction	Purpose and motivation for the course, recapitulation from	2
		Universal Human Values-I.	
		2. Self-Exploration–what is it? - Its content and process; 'Natural	
		Acceptance' and Experiential Validation- as the process for self-	
		exploration.	
		3. Continuous Happiness and Prosperity- A look at basic Human	
		Aspirations	
		4. Right understanding, Relationship and Physical Facility- the basic	
		requirements for fulfilment of aspirations of every human being	
		with their correct priority.	
		5. Understanding Happiness and Prosperity correctly- A critical	

		Dr. D.Y. PATIL VIDY2 (DEMED VID)	APEETH, PUNE (RSITY)
		appraisal of the current scenario 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels	
	Understanding Harmony in the Human Being - Harmony in Myself!	 Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. 2. Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. 3. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). 4. Understanding the characteristics and activities of 'I' and harmony in 'I'. 5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail. 6. Programs to ensure Sanyam and Health. 	6
2	Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship	 Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship 2. Understanding the meaning of Trust; Difference between intention and competence 3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship 4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals 5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family. 	6
3	Harmony in the Nature and Existence - Whole	 Understanding the harmony in the Nature Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence of mutually interacting Unit in all-pervasive space. Holistic perception of harmony at all levels of existence. 	7

	Total Number of Lectures	30
	organizations	
	b) At the level of society: as mutually enriching institutions and	
	engineers, technologists and managers	
	a) At the level of individual: as socially and ecologically responsible	
	Order:	
	6. Strategy for transition from the present state to Universal Human	
	and production systems	
	5. Case studies of typical holistic technologies, management models	
	production systems.	
	develop appropriate technologies and management patterns for above	
	and eco-friendly production systems, c. Ability to identify and	
Ethics	Ability to identify the scope and characteristics of people friendly	
Professional	professional competence for augmenting universal human order b.	
of Harmony on	4. Competence in professional ethics: a. Ability to utilize the	
Understanding	Humanistic Universal Order	
Holistic	3. Basis for Humanistic Education, Humanistic Constitution and	
the above	2. Definitiveness of Ethical Human Conduct	
the above		

TUTORIAL SESSIONS

Unit		No. of Lectures							
1	Practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking								
	Practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease.								
2	Practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.	3							
3	Practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.	3							
4	Practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. to discuss the conduct as an engineer or scientist etc	3							

Total

Dr. D.Y. PATIL VIDYAPEETH, PUNE

14

BOOKS RECOMMENDED:

- 1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010
- 2. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 3. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 4. The Story of Stuff (Book).
- 5. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 6. Small is Beautiful E. F Schumacher.
- 7. Slow is Beautiful Cecile Andrews
- 8. Economy of Permanence J C Kumarappa
- 9. Bharat Mein Angreji Raj PanditSunderlal
- 10. Rediscovering India by Dharampal
- 11. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 12. India Wins Freedom Maulana Abdul Kalam Azad
- 13. Vivekananda Romain Rolland (English)
- 14. Gandhi Romain Rolland (English)

MODE OF CONDUCT (L-T-P-C 2-1-0-3 or 2L:1T:0P 3 credits): Lectures hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analysing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self- observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations.

Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

provide support to a student in performing actions commensurate to his/her beliefs. It

is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses.

This course is to be taught by faculty from every teaching department, including HSS faculty. Teacher preparation with a minimum exposure to at least one 8- day FDP on Universal Human Values is deemed essential.

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, self-assessment, peer assessment etc. will be used in evaluation. Example:

Assessment by faculty mentor: 10 marks

Self-assessment: 10 marks

Assessment by peers: 10 marks

Socially relevant project/Group Activities/Assignments: 20 marks

Semester End Examination: 50 marks

The overall pass percentage is 40%. In case the student fails, he/she must repeat the course.

This is only an introductory foundational input. It would be desirable to follow it up by

a) faculty-student or mentor-mentee programs throughout their time with the institution

b) Higher level courses on human values in every aspect of living. E.g. as a professional

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HU 301.1	-	-	-	-	-	2	3	3	3	3	-	2	-	-	1
HU 301.2	-	-	-	-	-	2	3	3	3	3	-	2	-	-	1
HU 301.3	-	-	-	-	-	3	2	3	3	2	-	2	-	-	1
HU 301.4	-	-	-	-	-	2	-	3	3	2	-	3	-	-	1

COURSE: NPTEL/SWAYAM/MOOC online course						
COURSE CODE: BTSEC301	L	Т	Р	Η	[r (С
MARKS: 50	2	0	0	2	2	2

OBJECTIVE

Enhancement of student's skill by giving them the opportunity to gain insight on a topic of interest which is not a part of the syllabus.

DESCRIPTION:

The list of courses offered on the MOOCs platform during the third semester are provided to the students. The list includes core program specific courses, soft skill development courses and other additional skill development courses, the duration of which is 8 weeks. The students choose any one of the course which interests them the most. At the end of the semester the students need to earn a certificate on the basis of which they will be given credits out of two.

COURSE: APTITUDE BUILDING-III COURSE CODE: BTAEC301

MARKS: 50

LT P Hr C 0 0 2 2 1

OBJECTIVE

1. To enhance the logical reasoning skills of the students and help them improve the problem-solving abilities

2. To acquire skills required to solve quantitative aptitude problems

3. To boost the verbal ability of the students for academic and professional purposes

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTAEC301.1	Exhibit sound knowledge to solve problems of Quantitative Aptitude
BTAEC301.2	Demonstrate ability to solve problems of Logical Reasoning
BTAEC301.3	Display the ability to tackle questions of Verbal Ability
BTAEC301.4	Develop technical skills

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course. **COURSE DESCRIPTION**

Sr	Practical/Training/Tests/Interviews	Contact
no.		Hours
1	Data arrangements and Blood relations	04
2	Ratio and Proportion	04
3	Percentages, Simple and Compound Interest	04
4	Number System	04
5	Essential grammar for placements	02
6	Electromagnetic Spectrum, Fluorescence and Bioluminescence	02
7	Instrumentation of Microscope	02
8	Morphometry	01
9	Data representation	02
10	Competitive Examination Preparation	02
11	Mock Interviews	01
12	Discussion session-Industry Experts/Academia Experts/Alumni	02
	TOTAL	30

METHODOLOGY

The course will be covered through Lectures/Assignments/Practical/Training/Tests/Interviews

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Continuous Internal Assessment		20
Attendance		
Assignments/Practical/Training/Test	ts/Interviews	30
Total		50

BOOKS RECOMMENDED:

1. R. S. Aggarwal, (2017). Quantitative Aptitude for Competitive Examinations, 3rd (Ed.). New Delhi: S. Chand Publishing

- 2. ETHNUS, (2016). Aptimithra, 1st (Ed.). Bangalore: McGraw-Hill Education Pvt. Ltd.
- 3. Arun Sharma, (2016). Quantitative Aptitude, 7th (Ed.). Noida: McGraw Hill Education Pvt. Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HU 102.1	-	2	2	-	2	-	-	-	-	-	-	2	2	-	-
HU 102.2	1	1	1	-	-	-	-	-	-	-	-	-	1	-	-
HU 102.3	1	1	1	-	2	-	-	-	-	2	-	-	1	-	-
HU 102.4	1	1	1	-	1	-	-	-	-	-	-	-	1	-	-

SEMESTER IV										
Course Code	Course Name	L	Т	Р	Hr	Cr				
BT 401	Molecular Biology	3	0	4	7	5				
BT 403	Plant Biotechnology	3	0	4	7	5				
BT 404	Immunology	3	0	2	5	4				
BT 405	Developmental Biology	2	0	2	4	3				
BT 406	Animal Tissue culture	2	0	2	4	3				
BTIKS401 (Indian Knowledge Systems)	Indian Regional Biodiversity (Includes field trips and expeditions)	0	1	0	1	1				
BTAEC401 (Ability Enhancement)	Aptitude Building-IV (includes Competitive exam preparation, placement related sessions and alumni interactions and trainings)	0	0	2	2	1				
BTOP401 Non-credit mandatory course	Social outreach program/ Science for Society	0	1	0	1	0				
	Total	13	2	16	31	22				

COURSE: MOLECULAR BIOLOGY COURSE CODE: BT 401 MARKS: 200 (Theory 100 + Practical 100) 3 0 4 7 5

L T P Hr C

OBJECTIVE :

The objective of the course is to familiarize the students with the basic concept in molecular biology.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 401.1	Outline the concept of molecular biology and genome organization
BT 401.2	Illustrate the mechanism of DNA damage and repair, and recombination
BT 401.3	Explain and analyse the mechanism of DNA replication
BT 401.4	Summarize the mechanism of RNA transcription and its regulation with detailed understanding of post transcriptional processing
BT 401.5	Apply the knowledge of protein translation and posttranslational modification for understanding cellular functions
BT 401.6	Discuss the regulation of gene expression in prokaryotes and eukaryotes

PREREQUISITES:

Since the course is advance in nature, student must know about biochemistry of nucleic acids, chromosomes and gene structure. Student must have background with Genetics.

Unit	Торіс	Detail Syllabus	No. of				
			Lectures				
1	Introduction:	Concept of genes, Central dogma of Molecular Biology	2				
		DNA as the genetic material					
		Structure of DNA and RNA					
	Genome and its	Genome, cot analysis, C value paradox,	3				
	organization:	□ Repetitive DNA, Satellite DNA, Gene families and					
		gene clusters					
		□ Nuclear and organelle genome					
	Chromatin and	Ducleosome structure, Higher order chromatin structure	3				
	Chromosome	Chromosome structure in prokaryotes & eukaryotes					
	organization:						
2	DNA damage	□ Types of mutations. Replication errors and their repairs.	10				
	DNA Repair	□ DNA damage					
	Recombination:	\Box DNA repair – Single step and multistep					
	Models of homologous recombination in eukaryotes and						
		prokaryotes					

		Total Number of Lectures	45
	Molecular evolution:	DNA based phylogenetic trees and their applications.	1
		leucine zippers, helix-turn-helix.	
		 Regulatory proteins (Transcription factors)- DNA- binding motif of regulatory proteins. Role of zinc fingers, 	
		 Regulation of gene expression in eukaryotes 	
		attenuation in trp operon.	
	expression:	operon model- lac, trp operons. Transcriptional control by	
6	Regulation of gene	Regulation of gene expression in prokaryotes: The	5
		 Protein folding, Proteolysis 	
		Post-translational modifications: Covalent and enzymatic modification of proteins	
		inhibitors.	
		\Box Inhibitors of protein synthesis – antibiotics and other	
		Translational factors	
	modifications:	 Translation process- Initiation, Elongation & termination of translation in prokaryotes and eukaryotes, 	
	translational	tRNA & aminoacyl tRNA synthetases, Ribosomes	
5	Translation and post	General features of genetic code	8
		-	
		splicing mechanisms. RNA editing Inhibitors of transcription 	
		Capping and poly-adenylation, RNA splicing and	
		eukaryotic RNA:	
		 Posttranscriptional modifications/processing of 	
		Initiation, elongation and termination of RNA synthesis.	
		Transcription process: Chromatin remodeling,	
		polymerases.	
		RNA polymerases - E. coli and eukaryotic RNA	
	mRNA processing, maturation	sequences and transcription Unit	
4	Transcription and	 Components of transcriptional machinery in prokaryotes and eukaryotes: Promoters and Enhancer 	8
4	Turnerintien en 1	Telomeres. Inhibitors of DNA replication.	0
		replication	
		Replication of DNA and different models of	
		Enzymes and proteins in replication	
		synthesis.	
		Replication fork, continuous and discontinuous DNA	
3	Replication of DNA	Models of DNA replication	5
		Gene conversion.	
		sites recombination	
		conservative site specific recombination, biological roles of	
		 Genetic consequences of mechanism of recombination. Site specific recombination and transposition of DNA: 	

METHODOLOGY

The course would be taught through lectures lectures supported by tutorials and assignments.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Instant notes in Molecular Biology by Turner, Viva Publication, 1997.
- 2. Microbial Genetics by D. Freifelder, Jones & Bartlett, 2004.
- 3. Molecular Biology by D. Freifelder, Jones & Bartlett, 2008.
- 4. Molecular Biology of Gene Watson, by Baker et.al. 7th Edition, Pearsons Publication, 2013.
- 5. Molecular Biology of the Cell by B. Alberts, Talor & Francis, 2008.
- 6. Genes by Lewin and Benjamin, Editions IX, Jones & Bartlett, 2010

PRACTICAL IN MOLECULAR BIOLOGY (4 hrs. Per Week) MARKS 100

LIST OF PRACTICALS

1. Preparation of glassware, plasticware, reagents and stock solutions for molecular biology

2. To isolate DNA from a) bacteria, b) animal tissues/cells,c) plant material using appropriate methods

3. Quantification of DNA by UV absorption and analysis by agarose gel electrophoresis

4. To isolate plasmid DNA from bacteria, restriction analysis and agarose gel electrophoresis

5. To isolate RNA from eukaryotic cells and analyse by denaturing formaldehyde agarose gel electrophoresis

6. To find the Melting temperature of DNA

7. Isolation of nuclei, calcium activation of endonuclease resulting DNA ladder including the mononucleosome formation

8. Extraction of histone from nuclei and analysis by SDS-PAGE

Sr no.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of glassware, plasticware, reagents and stock solutions for molecular biology	Special preparations for carrying out molecular biology experiments	Molecular cloning by J. Sambrook, F. Edward and T. Maniatis, 2nd edition,
2	To isolate DNA from a) bacteria b) animal tissues/cells c) plant material using appropriate methods	To understand the critical requirement of specific methods depending on source of DNA	New York: Cold spring harbor laboratory press, 2012.
3	Quantification of DNA by UV absorption and analysis by agarose gel electrophoresis	To understand the quality, and quantity of DNA present per cell	
4	To isolate plasmid DNA from bacteria, restriction analysis and agarose gel electrophoresis	To distinguish between plasmid and genomic DNA in terms of size and migration properties in gel	

			(DEEMED UNIVERSITY)
5	To isolate RNA from eukaryotic	To understand various types of	
	cells and analyse by denaturing	RNA/RNA profile and quality of	
	formaldehyde agarose gel	RNA preparation	
	electrophoresis		
6	To find the Melting temperature of	Measure temperature and	
	DNA	estimate T _m from your data	
7	Isolation of nuclei, calcium activation of endonuclease resulting	Hands-on verification of the concept of chromatin structure	
	DNA ladder including the mononucleosome formation		
8	Extraction of histone from nuclei	Understanding the contribution of	
	and analysis by SDS-PAGE	histones in the formation of	
		chromatin	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 401.1	3	2	1	1	1	-	1	1	-	1	-	3	2	1	1
BT 401.2	3	3	3	3	3	1	1	1	1	1	-	3	2	1	1
BT 401.3	3	3	3	3	3	1	1	1	1	2	-	3	2	1	1
BT 401.4	3	3	3	3	3	1	1	2	1	1	-	3	2	1	1
BT 401.5	3	3	3	3	3	1	1	2	2	1	-	3	3	3	2
BT 401.6	3	3	3	3	3	1	1	2	1	1	-	3	3	3	2

COURSE: PLANT BIOTECHNOLOGY COURSE CODE: BT 403 MARKS: 200 (Theory 100 + Practical 100) 3 0 4 7 5

L T P Hr C

OBJECTIVE :

The objective of the course is to familiarize the students with basic concepts and advanced research areas in plant biotechnology.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 403.1	Understand the fundamentals of plant biotechnology and plant development
BT 403.2	Apply and evaluate the effect of plant growth regulators
BT 403.3	Establish and maintain various in vitro plant cell cultures
BT 403.4	Demonstrate plant micropropagation techniques and their applications
BT 403.5	Illustrate various plant transformation methods
BT 403.6	Explain plant secondary metabolites and their in vitro production

PREREQUISITES

Since the course is advance in nature, student must know about sterilization techniques and basic knowledge of plant sciences and molecular biology.

Sr. No	Торіс	Detail Syllabus	No. of
			Lectures
1	Introduction	Introduction to Plant Biotechnology	1
	Plant development	Embryo development, meristem development, differentiation and organ formation	3
2	Growth Hormones	Auxins, Cytokinins, Gibberellins, ABA and Ethylene as regulators of plant development	3
3	Plant Tissue culture Techniques	Totipotency, differentiation, redifferentiation, Techniques- explants, nutrient media, aseptic manipulations, incubation Callus culture, Suspension culture	6
4	Micropropagation	Pre-existing meristems	2
		Direct and indirect Organogenesis	2
		Somatic embryogenesis	2
			4

	Tot	al Number of lectures	45
		Bioreactors.	2
		Elicitors & biotransformation	2
		Hairy root culture	2
		In vitro production of secondary metabolites	4
6	Plant Natural Products	Secondary Metabolites, Types, Pathways	2
			-
		Applications	1
		Selective analysis of transgenics	2
		Direct gene transfer	-
		Transformation methods a) Agrobacterium b)	3
		screenable markers)	-
e	engineering	Agrobacterium based vectors (selectable and	2
5	Plant genetic	Agrobacterium as a natural genetic engineer	2
		Germplasm conservation	
		Applications	2
		Different stages of micropropagation &	

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	60 minutes	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Plant tissue Culture : Theory and Practice by S.S. Bhojwani and M.K. Razdan, Elsevier, Amsterdam, 1996.
- 2. An Introduction to Plant Biotechnology by H. C. Chawla, Oxford and IBH, 2002.
- 3. Gene Transfer to Plants by I.Potrykus and G. Spangenberg, Springer Lab Manual, Springer Verlag, 1997
- 4. Plant Biotechnology: New Products and Applications by J. Hammond, P. McGarvey, V. Yusibov, Springer Verlag, 1999.
- 5. Plant Biotechnology: The Genetic Manipulation of Plants by A. Slater, N. Scott and M. Fowler, Oxford University Press Inc. (2008)
- 6. Plant Physiology by Lincoln Taiz and Eduardo Zeiger. Panima Publishing Corporation, 2003
- Plant Physiology by L. Taitz, 3rd edition & 5th edition, Sinauer Associates Inc., Publishers Sunderland, Massachusetts U.S.A. 2002 & 2014.

PRACTICALS IN PLANT BIOTECHNOLOGY (4 hrs. Per Week)

MARKS 100

LIST OF PRACTICALS

- 1. Aseptic culture techniques for establishment and maintenance of in vitro cultures
- 2. Preparation of stock solutions of MS basal medium and plant growth regulators
- 3. Preparation of Nutrient media
- 4. Callus culture by using Carrot explant/ Leaf explants and somatic embryogenesis
- 5. Establishment of suspension culture by using callus/ isolated cells
- 6. In vitro embryo culture
- 7. Micropropagation by using axillary bud /apical meristem
- 8. Isolation and purification of active compounds from plants by column chromatography technique
- 9. Agrobacterium tumefaciens- mediated plant transformation
- 10. GUS staining of transformed plants

Sr. No	Name of the experiment	Learning objective	Literature/ Weblinks for reference
1	Aseptic culture techniques for establishment and maintenance of <i>in vitro</i> cultures	To learn the aseptic manipulation techniques for successful plant tissue culture experiments.	1) Plant Tissue Culture, K. K. Dey, New CentralBook Agency, 2007
2	Preparation of stock solutions of MS basal medium and plant growth regulators	To understand need of stock solution for media and growth regulators stock preparation and calculation of the same.	2) Plant tissue Culture:Theory and Practice byS.S. Bhojwani and
3	Preparation of Nutrient media	Preparation of PTC media using media and growth regulators stock solutions	M.K. Razdan, Elsevier, Amsterdam, 1996.
4	Callus culture by using Carrot explant/ Leaf explants and somatic embryogenesis	To understand procedure of surface sterilization of explant and perform callus culture and embryogenesis	3) Plant Biotechnology and its applications in Plant tissue culture by

			Dr. D.Y. PATIL VIDYAPEETH, PUN (DEEMED UNIVERSITY)
5	Establishment of suspension	Understand procedure and	A. Kumar and S. Roy,
	culture by using callus/	importance of suspension culture	I. K. International
	isolated cells		Publishing House,
			2006.
6	In vitro embryo culture	To learn embryo rescue through in	
		<i>vitro</i> method	
7	Micropropagation by using	To study micropropagation for	4) Molecular cloning: a
	axillary bud /apical meristem	regeneration of plants for various	laboratory manual. J.
		fields.	Sambrook,
			D.W.Russell, 3 rd
8	Isolation and purification of	Isolation and identification of plant	edition, New York:
	active compounds from plants	secondary metabolites	Cold Spring Harbor
	by column chromatography		Laboratory,. II, P 125 –
	technique		127, 2012.
			127, 2012.
9	Agrobacterium tumefaciens-	To understand importance and	
	mediated plant transformation	process for Agrobacterium	
		mediated plant transformation	
10			
10	GUS staining of transformed	To learn the technique to identify	
	plants	the transformants.	

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 403.1	3	3	1	2	1	1	1	1	1	2	1	3	3	3	2
BT 403.2	3	2	2	2	2	1	2	2	2	2	1	3	2	2	2
BT 403.3	3	2	2	2	3	2	3	1	3	2	2	3	2	3	3
BT 403.4	3	3	2	2	2	1	2	1	3	2	2	3	2	3	3
BT 403.5	3	3	2	2	3	1	3	1	3	3	2	3	2	3	3
BT 403.6	3	2	3	2	3	1	2	1	2	2	2	3	2	1	1

COURSE: IMMUNOLOGY COURSE CODE: BT 404 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVE:

The objective of the course is to familiarize the students with the immune system and it's function and the advances in the immunology.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 404.1	Develop the basic understanding of immunology, mediators of immunity, and organs of the immune system
BT 404.2	Explain various components involved in humoral and cell mediated immune responses
BT 404.3	Explain the structure and functions of various immunoglobulins
BT 404.4	Apply various techniques for determining antigen-antibody interactions
BT 404.5	Outline the organization and inheritance of MHC and their role in antigen presentation
BT 404.6	Apply the basic and advanced knowledge of immunology in understanding health and diseases, and to develop treatment measures

PREREQUISITES:

Student should have background of cell biology. They should know basic concept of molecular biology also to understand expression of immunoglobulin gene. They should know some basic assays.

Unit	Торіс	Detail Syllabus	No. of
			Lectures
1.	Introduction to Immune System (i) The Cells and soluble mediators of the Immune system (ii) Organs of the Immune system	 Historical Perspective: Early vaccination studies, Early studies of Humoral and Cellular Immunity, Theoretical Challenges, Infection and Immunity (in brief) The Cells and soluble mediators of the Immune system (i) Cells of the immune system : Phagocytes, B cells & T cells, Cytotoxic cells, and Auxillary cells Soluble mediators of immunity : Acute phase proteins, Complement proteins & Cytokines Immune response to pathogens : Innate and Adaptive Immunity Innate Immune response, Pathogen Associated Molecular Patterns (PAMPs), Phagocytes and Lymphocytes as a key mediators of Immunity 	8

-		Dr. D.Y. PA	TIL VIDYAPEETH, PUNE
2.	Generation of B cell & T cell	 (ii) Adaptive Immune Response : Features of the adaptive immune response: (Specificity and Memory), Humoral Immunity & Cell-mediated Immunity (Antigen recognition and Antigen eradication, B cell clonal selection, Concept of antigen processing & presentation on MHC molecules) 4. Principle of vaccination 5. Inflammation: Principle components, Chemotaxis 6. Consequences of Immune system failure : Autoimmunity, Immunodeficiency, & Hypersensitivity 1. Primary and Secondary lymphoid Organs 2. Primary lymphoid Organs (Thymus, Bone Marrow) 3. Secondary Lymphoid Organs (Lymph nodes, Spleen, and Mucosa associated Lymphoid tissue (MALT) 1. Immunogenicity Versus Antigenicty 2. Haptens as valuable research and diagnostic tools 	4
	response	 3. Properties of Immunogen Contributing to Immunogenicity 4. Biological System contribution in Immunogenicity 5. Adjuvants : Freund's incomplete and complete adjuvant 6. Epitopes : Characteristic Properties of B-cell epitope 	
3.	Immunoglobulins Structure and Function	 Basic structure of antibodies, Chemical and enzymatic methods for basic antibody structure Fine structure of antibodies Antibody Classes and Biological activities Antigen determinants on Immunoglobulins : Isotype, Allotype & Idiotype Immunoglobulin Superfamily Monoclonal Antibodies 	6
4	Antibody- mediated effector functions	 Opsonization Activation of complement system : Classical and alternative pathway Antibody-dependent cell mediated cytotoxicity (ADCC) 	3
	Organization and Expression of Immunoglobulin genes	 Immunoglobulin genes organization & Rearrangements Generation of antibody diversity Synthesis, assembly, and Secretion of Immunoglobulins Antibody Engineering 	4
	Antigen-Antibody Interactions	 Strength of antigen and antibody interactions: Antibody affinity, antibody avidity, and Cross reactivity Precipitation reactions (Immunodiffusion and Immunoelectrophoretic technique) Agglutination reaction Radioimmunoassay Enzyme linked Immunosorbant Assay (ELISA) Western blot Immunoprecipitation Flow Cytometry 	6
5	The Major Histocompatibility Complex (MHC) and Antigen presentation	 General Organization and Inheritance of the MHC, MHC molecules Peptide binding by class I and class II MHC molecules Experimental demonstration to prove processing of antigen is required for recognition by T cells Antigen Presenting cells (APCs) Antigen-Processing and Presentation Pathways 	4

		(DF	IL VIDYAPEETH, P EMED UNIVERSITY)
		(i) Endogenous Antigens: The Cytosolic Pathway	
		(ii) Exogenous Antigens: The Endocytic Pathway	
6.	Immune system in	1. Tolerance and Autoimmunity:	6
	Health and	Central and Peripheral Tolerance Establishment and	
	Disease	Maintenance of Tolerance, Autoimmunity, Organ-Specific	
		Autoimmune disease, Systemic Autoimmune Disease	
		2. Transplantation Immunology:	
		Immunological basis of graft rejection, HLA typing, Mixed	
		Lymphocyte Reaction, General Immunosuppressive Therapy	
		3. Immune Response to Infectious Diseases (Viral infections	
		(Influenza virus) and bacterial infections (Mycobacterium	
		tuberculosis), and Parasitic disease (Plasmodium species)	
		4. Vaccines: Active and Passive Immunization, Live, Attenuated	
		vaccines, Inactivated or Killed Vaccines, Subunit and	
		Conjugate Vaccines, DNA vaccines, Recombinant Vector	
		Vaccines	
		5. AIDS: HIV infection of target cells and Activation of Provirus,	
		Stages in viral replication cycle for therapeutic anti-retroviral	
		drugs, Therapeutic agents inhibiting retrovirus replication	
		6. Cancer and the immune system: Origin and terminology,	
		Malignant transformation of cells, Oncogenes and Cancer	
		induction, Tumors of the immune system, Tumor antigens,	
		Tumor evasion of the immune system, Cancer immunotherapy	
		Total Number of Lectures	41

METHODOLOGY:

The course would be taught through lectures, demonstrations and LCD powerpoint presentation.

EVALUATION SCHEME (THEORY)

Examination I Internal	Duration 60 minutes	Marks 20
II Internal Attendance	30 minutes	15 5
End Semester Exam Total	2 hours 30 minutes	60 100

BOOKS RECOMMENDED:

- Immunology by J, Kuby , 5th edition, W.H. Freeman and company, New York, 2002.
 Essentials of Immunology by I. M. Roitt, 10th edition, MOSBY, Elsevier Ltd. (International Edition), 2002.
- Cellular and Molecular Immunology by A. Abbas, 8th edition, Elsevier Ltd., 2014.
 Molecular Biology of the Cell by B. Alberts, 5th edition, Garland Science, 2007.

PRACTICAL IN IMMUNOLOGY

(2 Hrs. Per Week)

MARKS 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	To determine Blood Group antigens by hemagglutination assay	To understand about the various blood group antigens present in a population; principle of agglutination	Immunology, The experimental Series – II by W. Luttmann, K. Bratke, M. Kupper, Myrtek, USA, Elsevier, Academic Press; 2006
2.	Detection of syphilis using RPR card test	Immunological detection of specific bacterial infections by indirect agglutination	Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6 th edition, ASM Press, 2002. Practical immunology by F. C. Hay, M. R. Olwyn, 4 th edition, Westwood. Blackwell Publishing Company; 2002. Immunology by J. A. Owen, J. Punt, S. A. Kuby, 7th edition, USA: Susan Winslow; 2013
3.	Detection of typhoid infection by WIDAL test	Immunological detection of specific bacterial infections by direct agglutination	Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6 th edition, ASM Press, 2002. Immunology by J. A. Owen, J. Punt, S. A. Kuby, 7th edition, USA: Susan Winslow; 2013
4.	Density gradient separation of PBMCs using Histopaque-1077	Principle of density gradient separation of immune cells	Immunology by M. D, J. Brostoff, D. B. Roth, I. Roitt, 7th edition, Elsevier, 2007. Immunology, The experimental Series – II by W. Luttmann, K. Bratke, M. Kupper, Myrtek, USA, Elsevier, Academic Press; 2006 Cell Separation Media Methodology and Applications 18111569, handbook GE Healthcare Isolation of mononuclear cells Methodology and Applications 18-1152-69, handbook GE Healthcare http://www.gelifesciences.com/handbooks/

		Γ	Dr. D.Y. PATIL VIDYAPEE (DEFMED UNIVERSIT)
5.	To study interaction of antigen and antibody by Ouchterlony double diffusion assay	To learn about precipitin phenomena at equimolar concentrations of antigen and antibody	 A handbook of practical and clinical immunology by G. P. Talwar, S. K. Gupta,. 2nd ed. Vol. I & II; 2006 Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6th edition, ASM Press, 2002. Practical immunology by F. C. Hay, M. R. Olwyn, 4th edition, Westwood. Blackwell Publishing Company; 2002. Immunology by M. D, J. Brostoff, D. B. Roth, I. Roitt, 7th edition, Elsevier, 2007.
6.	Determination of antibody titre by ELISA	To learn about different types of ELISA method and their applications	 A handbook of practical and clinical immunology by G. P. Talwar, S. K. Gupta,. 2nd ed. Vol. I & II; 2006 Manual of clinical laboratory Immunology by N. R. Rose, R. G. Hamilton, B. Detrick, 6th edition, ASM Press, 2002. Immunology by J. A. Owen, J. Punt, S. A. Kuby, 7th edition, USA: Susan Winslow; 2013.
7.	Production of polyclonal antibodies in mouse	Principle of immunization, collection and analysis of serum for antibody	A handbook of practical and clinical immunology by G. P. Talwar, S. K. Gupta,. 2 nd ed. Vol. I & II; 2006
8.	Purification of IgG from serum	Single step purification of IgG by affinity chromatography	Physical Biochemistry, D. Freifelder, 2 nd ed. W.H. Freeman and Company, New York; 1982 Affinity Chromatography, Vol. 1: Antibodies, 18103746, handbook GE Healthcare http://www.gelifesciences.com/handbooks/

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 404.1	3	3	2	-	-	2	-	-	2	3	-	3	2	1	-
BT 404.2	3	3	2	-	-	2	-	-	2	2	-	3	2	1	-
BT 404.3	3	2	2	-	-	2	-	-	2	3	-	3	2	1	-
BT 404.4	3	3	2	2	2	3	2	3	3	3	2	3	3	2	2
BT 404.5	3	2	2	1	-	1	-	-	2	2	-	2	3	2	2
BT 404.6	3	2	2	1	1	2	3	3	3	3	2	3	3	3	2

COURSE: DEVELOPMENTAL BIOLOGY COURSE CODE: BT 405 MARKS: 100 (Theory 50 + Practical 50) 2 4 3

L T P Hr C

2 0

OBJECTIVE :

The objective of the course is to develop a basic understanding of animal development, emphasizing on various stages in embryonic development. The course would also give an insight on the influences of environment in animal development and applications of basic research in developmental biology.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 405.1	Elucidate the morphological operations that convert a fertilized egg into a multicellular organism
BT 405.2	Describe the molecular, biochemical, and cellular processes that control the formation of specialized cells, tissues, and organs during embryonic development
BT 405.3	Recognize the model organisms utilized in the study of developmental biology and contrast the developmental schemes of various organisms
BT 405.4	Explain the genetic, molecular, and cellular methods, inclusive of genome editing, employed to study the processes of development in different organisms
BT 405.5	Showcase the ability to observe and use technical skills to obtain and examine quantitative data, interpret results, and present experimental data
BT 405.6	Discuss the importance of developmental biology in reproduction including assisted reproductive technologies

PREREQUISITES:

The course requires senior school (10+2 or equivalent) level knowledge of development in animals.

Unit	Торіс	Detail Syllabus	No. of
			Lectures
1.	Introduction to	□ Early beliefs in organismal development	1
	Developmental	Discovery of primary embryonic organizer	
	Biology		
2	Gametogenesis and Fertilization	 Spermatogenesis and Oogenesis in placental mammals (mouse/human) 	4
		□ Comparison of internal and external fertilization	
		□ Steps in the fertilization process in mouse/human:	
		Capacitation of sperm, Acrosome Reaction, Sperm-	
		egg fusion, Activation of the egg, Fusion of sperm	
		and egg pro-nuclei, Prevention of polyspermy (with	
		reference to placental mammals and sea urchin)	

		applications in biomedical research	
		injection (ICSI)□ Genetically modified organisms (GMOs) and their	
		fertilization (IVF) and intra-cytoplasmic sperm	
		 Applications of stell cens in regenerative medicine Assisted reproductive technology on <i>in vitro</i> 	
6	Translational developmental biology	 Biology of stem cells Applications of stem cells in regenerative medicine 	2
6	Translational	Endocrine disruptors Diclosure fatere colle	
	development	and pathogens	
	influences in	\Box Teratogens, with emphasis on alcohol, retinoic acid	
5	Environmental	Environmental disruption of normal development	3
		regeneration	
		 Epimorphosis, Morphallaxis and Compensatory 	
	Regeneration	metamorphosis in insects and Anurans	
4	Metamorphosis and	 Complete and incomplete metamorphosis, 	3
		and epidermis, fore-limb and hind-limb in vertebrates	
		emphasis on the formation of central nervous system	
		 Development of the germ layer derivatives with 	
	Organogenesis	<i>Drosophila</i> and vertebrates□ Homeotic genes	
3	Axes formation and	Axes formation and early embryonic patterning in Drosonhild and vertebrates	4
2	A waa famma ti 1	Lateral inhibition in <i>Drosophila</i> neurogenesis	A
		in early embryogenesis	
		□ Cell fate specification based on position and lineage	
		□ Gene silencing: Antisense RNA and Gene knockouts	
		translation	
		of genome, transcription, translation and post-	
		□ Differential gene expression: Regulation at the level	
		rule	
	Development	metaplasia and animal cloning, and exceptions to the	
-	Development	 Genomic equivalence: Evidences with emphasis on 	
3	Genes and	 Origin of gene theories in development 	5
		mesoderm and somitogenesis	
		□ Gastrulation in mouse/human embryos with emphasis on primitive streak, differentiation of lateral	
		gastrulation	
		□ Various types of morphogenetic movements during	
		mammals	
	Gastrulation	□ Primary germ layers and their derivatives in placental	
	cleavage and	embryos	
	Stages after embryonic	□ Pre-implantation and implantation of mouse/human	4
		placental mammals (mouse/human)	
		(sea urchin), molluscs (snail), amphibians (frog) and	
		 Emphasis on cleavage in embryos of echinoderms 	
		position of mitotic spindles	
		blastomeres, position and amount of yolk, and	
		 Types of cleavage based on potentiality of 	
	Embryonic Cleavage	 Cytoskeletal mechanisms in cleavage Maternal-zygotic transition 	4

METHODOLOGY:

The course would be covered through lectures and group discussions using teaching aids.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS/JOURNALS RECOMMENDED:

1. Gilbert, S. F., Barresi, M. J. F. (2016). Developmental Biology, Eleventh Edition, Sinauer Associates Inc.

2. Wolpert, L., Tickle, C., Arias A. M. (2015). Principles of Development, Fifth Edition, Oxford University.

3.Slack, J. M. W. (2012). Essential Developmental Biology, Third Edition, Wiley- Blackwell.

4. S. Sell (Ed.) (2013). Stem Cells Handbook, Second Edition, Humana Press, New York

PRACTICAL IN DEVELOPMENTAL BIOLOGY (2 hours per week) MARKS: 50

LIST OF PRACTICALS

- 1. Introduction to life cycle in animal development (eg: Drosophila).
- 2. Dissection and identification of imaginal discs in the third instar larval stages in Drosophila.
- 3. Preparation and mounting of adult Drosophila structures in Hoyer's medium or Canada balsam.
- 4. Examination of external morphology of Drosophila eyes using nail polish imprint technique.

5. Preparation and identification of 48 hours and 96 hours chick whole-embryos using filter paper ring technique.

- 6. Study of cell death during morphogenesis
- 7. Staining bone and cartilage in zebrafish (Danio rerio) embryos.
- 8. Study of regeneration in Hydra

Sr. No.	Name of the Experiment	Learning objective	Literature/ Weblinks for reference and videos			
1.	Introduction to life cycle in animal development (eg: <i>Drosophila</i>).	Familiarization with various stages of life cycle in insects. Understanding the the phenomenon of metamorphosis, and differentiation of the sexes.	Fly Pushing: The theory and practice of <i>Drosophila</i> genetics, By R. J. Greenspan 2 nd Edition The Neurosciences Institute, San Diego.			
2.	Dissection and identification of imaginal discs in the third instar larval stages in <i>Drosophila</i> .	Familiarization with the location and types of the progenitors of various adult structures.	 Dissection of imaginal discs from 3rd instar <i>Drosophila</i> Larvae, D. C. Purves and C. Brachmann. <i>J Vis Exp</i>; (2): 140. 2007. The preparative isolation of imaginal discs from larvae of <i>Drosophila Melanogaster</i>, J. W. Fristrom and H. K. Mitchell, <i>J Cell Biol</i>; 27: 445–448, 1965. Fly Pushing: The theory and practice of <i>Drosophila</i> genetics, By R. J. Greenspan 2nd Edition The Neurosciences Institute, San Diego. 			

		Γ	Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEFMED UNIVERSITY)			
Sr. No.	Name of the Experiment	Learning objective	Literature/ Weblinks for reference and videos			
3.	Preparation and mounting of <i>adult Drosophila</i> <i>structures</i> in Hoyer's medium or Canada balsam.	Familiarization with wings, legs and thorax in adult flies and understanding the patterning of these cuticular structures.	 Preparation and mounting of adult <i>Drosophila</i> structures in Canada balsam, D. L. Stern and E. Sucena, <i>Cold Spring Harb</i> <i>Protoc</i>; 373-375, 2012. Preparation and mounting of adult <i>Drosophila</i> structures in Hoyer's medium, D. L. Stern and E. Sucena, <i>Cold Spring</i> <i>Harb Protoc</i>, 107-109, 2012. 			
4.	Examination of external morphology of <i>Drosophila</i> eyes using nail polish imprint technique.	Understanding the patterning of compound eye in insects.	A simple nail polish imprint technique for examination of external morphology of <i>Drosophila</i> eyes, R. Arya and S. C. Lakhotia, <i>Curr Sci</i> ; 90:1179-1180, 2006.			
5.	Preparation and identification of 48 hours and 96 hours chick whole-embryos using filter paper ring technique.	Familiarize with prominent structures formed during organogenesis in early chick embryos.	Improved method for chick whole-embryo culture using a filter paper carrier, S. C. Chapman et al, <i>Dev Dyn</i> ; 220:284-289, 2001.			
6.	Study of cell death during morphogenesis	Observation of cell death in chick embryos (5 days old) limd morphogenesis				
7.	Staining bone and cartilage in zebrafish (<i>Danio rerio</i>) embryos.	To study skeletogenesis using a unique model that is amenable to developmental analyses and genetic screening.	 A two-color acid-free cartilage and bone stain for zebrafish larvae, M. B. Walker and C. B. Kimmel, <i>Biotechnic & Histochemistry</i>, 82: 23-28, 2006. Zebrafish embryology and cartilage staining protocols for 			
8.	Study of regeneration in Hydra	Observation of regeneration process in Hydra	cartilage staining protocols for high school students, Emran F et al, <i>Zebrafish</i> ; 6: 139-143, 2009.			

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 405.1	1	2	1	-	-	1	-	1	1	1	-	2	2	1	-
BT 405.2	1	2	1	2	2	1	-	1	1	1	-	2	2	1	-
BT 405.3	1	1	1	1	1	1	1	1	1	1	1	3	2	1	1
BT 405.4	2	2	1	3	2	1	1	1	1	1	1	3	3	2	2
BT 405.5	2	3	1	3	2	1	1	1	1	1	1	2	3	2	2
BT 405.6	2	2	1	3	2	1	-	2	1	2	1	3	3	2	3

COURSE: ANIMAL TISSUE CULTURE COURSE CODE: BT 406 MARKS: 100

L T PHrC 2 0 2 4 3

OBJECTIVE OF THE COURSE:

Complete understanding of the science of Animal Tissue Culture, with emphasis on Mammalian Cell Culture.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to
BT 406.1	Apply the knowledge of animal tissue culture to grow different types of cells and analyze the growth patterns and metabolic processes in cultured cells
BT 406.2	Distinguish between primary and secondary cell cultures and use appropriate techniques for establishing cell lines
BT 406.3	Design large-scale animal cell culture systems for the industrial production of therapeutic molecules
BT 406.4	Analyze the applications of in vitro and in vivo cell culture in various fields and develop 2D and 3D tissue models

PREREQUISITES:

Students should have undertaken a course in Cell Biology before taking this course on Animal Tissue Culture. Students should be aware of good laboratory practices.

Unit	Торіс	Details of Syllabus	
			Lectures
1	Introduction and essentials	History of animal tissue culture	6
	of animal tissue culture	Sterilization methodologies Aseptic technique	
		Laboratory set-up for ATC	
		Equipment and materials used in ATC	
		Terminology used in ATC.	
		Safety & bioethics in ATC	
		Types of tissue culture	
		Cell culture techniques/methods (Subculturing, Cell	
		quantitation, , Cell separation, Cell transfection,	
		special techniques)	
		Contamination in cell culture	
		Cryopreservation	
		The art of animal cell culture;	
2	Growth, metabolism &	Energy metabolism	4
	biology of cultured cells	Nutritional and physicochemical factors	
		Culture media and components	
		Growth parameters	
		Cell adhesion and migration; cell culture substrates	
		Cell proliferation, cell cycle, inhibition of growth	
		Cell senescence, cell death	
		Cell signaling, Growth factors	

		Cell differentiation & dedifferentiation wrt Animal	(DEEMED UNIVERSITY)
		Tissue Culture	
3	Primary cell culture	Establishment & maintenance of primary cell cultures:- General principles and methods Examples of adherent cell primary cultures including mammalian and insect cell cultures Examples of non-adherent primary cell cultures Characteristics of various specialized cell types	4
4	Secondary cell culture	Establishment and maintenance of secondary and continuous cell cultures of mammalian cells Culture evolution Transformation and immortalization Cell cloning and selection	3
5	Characterization of cell lines	Karyotyping & chromosome analyses Biochemical characterization Genetic characterization. Growth characteristics & tumorigenicity Protein markers	3
6	Large-scale animal cell culture	Large scale culture of adherent and suspension cells Bioreactors for large-scale culture Use of microcarriers Cell factories; automation	3
7	Applications of cell culture: <i>in vitro</i>	Hybridoma technology :Monoclonal Abs Production of therapeutic proteins & vaccines using cell culture <i>In vitro</i> cytotoxicity assays and tissue-engineered <i>in</i> <i>vitro</i> tissue models Cell migration assay, <i>In vitro</i> tumorigenicity, Cell invasion assay	4
8	Applications of cell culture: <i>in vivo</i>	Types of cells for transplantation, culture of ESCs In vitro induction of cellular differentiation Three-dimensional cell culture & methods Tissue engineering/cell-based therapies Examples of commercialized cell-based products	3
Total Number of lectures			

METHODOLOGY: The course will be taught through lectures, exercises, participative learning, videos.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

PRACTICAL IN ANIMAL TISSUE CULTURE (2 Hrs. Per Week) MARKS 50

LIST OF PRACTICALS

- 1. Laboratory set-up and Equipment used in ATC
- 2. Preparation of Ca++-Mg++-free phosphate buffered saline
- 3. Preparation of cell culture medium
- 4. The practice of aseptic technique
- 5. Subculturing of adherent cell line, with counting & viability staining of cells
- 6. Cryopreservation and thawing of cells
- 7. Isolation of peripheral blood mononuclear cells
- 8. Isolation and culture of primary cells.
- 9. Encapsulation of cells in alginate beads and MTT staining
- 10. Cytotoxicity testing using cultured cells

Sr. No.	Name of the experiment	Learning objective
1	Laboratory set-up and Equipment used in ATC	To understand the functions of ATC Laboratory and use of equipment in ATC
2	Preparation of Ca ⁺⁺ -Mg ⁺⁺ -free phosphate buffered saline	The uses and method of preparation of PBS
3	Preparation of cell culture medium	Composition and preparation of cell culture medium
4	The practice of aseptic technique	Importance and practical knowledge of aseptic technique in ATC
5	Subculturing of adherent cell line, with counting & viability staining of cells	Procedure, principle and nuances of passaging adherent cells, use of hemocytometer, Trypan Blue staining
6	Cryopreservation and thawing of cells	Principle, procedure and critical steps in freezing and thawing cells
7	Isolation of peripheral blood mononuclear cells	Method of density gradient centrifugation for PBMC isolation
8	Isolation and culture of primary cells.	Technique and importance of primary cell culture

9	Encapsulation of cells in alginate beads and MTT staining	Use and method for preparation of cell-laden alginate beads
10	Cytotoxicity testing using cultured cells	Application of cultured cells for cytotoxicity testing

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 406.1	3	3	3	-	-	3	3	1	3	3	-	3	3	3	1
BT 406.2	3	3	3	-	3	2	-	-	2	2	-	3	3	3	3
BT 406.3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3
BT 406.4	3	3	3	3	3	3	3	1	2	1	2	3	3	3	3

COURSE: INDIAN KNOWLEDGE SYSTEM: INDIAN REGIONAL BIODIVERSITY
COURSE CODE: BTIKS401L T P Hr CMARKS: 500 1 0 1 1

OBJECTIVE:

The objective of this course is to make students aware and familiarize them with the Indian Knowledge System to create a holistic and culturally sensitive learning environment. By incorporating elements of IKS into modern education, students can gain a deeper understanding of their cultural heritage, diverse perspectives, and alternative ways of knowing.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTIKS401.1	Understand a holistic understanding of India's traditional knowledge systems and their relationship with regional biodiversity
BTIKS401.2	Explore various biogeographical zones and their characteristics
BTIKS401.3	Analysis of India's various ecosystems, that include tropical rainforests, deserts, marshes, and mountain ranges, regional biodiversity influencing ecosystem processes and services.
BTIKS401.4	Assess the present conservation problems facing Indian regional biodiversity and evaluate viable methods and policies for the protection and sustainable management of these natural resources.

PREREQUISITES:

Open to new ideas and willingness to learn and contribute.

Unit	Торіс	Detailed syllabus	No. of Lectures
1.	Introduction to Indian Knowledge System (IKS),	 Overview of India's traditional knowledge systems (e.g., Ayurveda, Yoga, Vastu Shastra, etc.). Understanding the integration of traditional knowledge with nature and biodiversity. Role of traditional ecological knowledge in resource management. 	1
2	Biogeographic Zones of India	Overview of India's biogeographic zones and their characteristics.	3

Biodiversity of the	• Study of the Himalayan region, Indo-Gangetic Plains, Western Ghats, Eastern Ghats, Deccan Plateau, and coastal areas.	
• •		
• •	coastal areas.	
• •		
• •		
• •	Exploration of the Western Ghats biodiversity hotspot.	4
Western Ghats,	□ Tropical rainforests and endemic species.	
Coastal areas and	□ Threats and conservation challenges.	
	ě	
marine ecosystems	5 F	
	1	
	-	
	5	
	-	
	e	
Biodiversity of the		4
•		-
U		
	forests.	
Desert ecosystems	Protected areas and wildlife reserves.	
	☐ Thar Desert ecosystems and adaptations	
Conservation	Habitat destruction and fragmentation	4
Strategies	• Pollution and its impact on biodiversity.	
-	Climate change and its implications for Indian	
	biodiversity.	
	Integration of traditional ecological knowledge with modern	
	conservation strategies.	
	Collaborative conservation efforts with local	
	communities.	
	• Ethical considerations and issues related to	
	TOTAL	16
	marine ecosystems Biodiversity of the Indo-Gangetic Plains, Forests, Desert ecosystems Conservation	CoustributeTraditional ecological insights and conservation practices.marine ecosystemsTraditional ecological insights and conservation practices.Coastal areas, mangroves, estuaries, and marine biodiversity.Traditional knowledge related to coastal resource management.Traditional knowledge related to coastal resource management.Traditional knowledge related to coastal resource management.Biodiversity of the Indo-GangeticFlora and fauna of the Indo-Gangetic region.Riverine ecosystems and their ecological importancePlains, Forests, Desert ecosystemsProtected areas and wildlife reserves.Thar Desert ecosystems of the the tability.Thar Desert ecosystems and adaptationsConservation StrategiesHabitat destruction and fragmentation biodiversity.Collaborative conservation strategies.Collaborative conservation efforts with local communities.Communities.Ethical considerations and issues related to biodiversity research and conservation.

METHODOLOGY

The course will be covered through lectures & assignments.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED

- 1. Introduction to Indian knowledge system: concepts and applications. ISBN: 9789391818203, authors: B. Mahadevan, Nagendra Pavana , Vinayak Rajat Bhat.
- 2. Living with others (Biodiversity around us). ISBN: 9788123017464. author: M.A. Haque
- 3. 3) Biodiversity and livelihood: lessons from community research in India. ISBN: 978-981-14-8307-3, authors: Oommen V., Oommen, Laladhas K, Erach Bharucha

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

- 4. 4) Biodiversity traditional knowledge and intellectual property rights, ISBN: 9788172339692, authors: s. Ram Reddy, M. Surekha, V. Krishna Reddy
- 1) Biodiversity hotspot of the western ghats and Sri Lanka. ISBN:9781774913758, author: T. Pullaiah
- 2) Ethnobotany of India, volume 2: western ghats and west coast of peninsular India, ISBN: 978-1771884044, authors: T. Pullaiah, K. V. Krishnamurth, Bir Bahadur
- 3) SAHYADRI : WESTERN GHATS BIODIVERSITY INFORMATION SYSTEM (http://ces.iisc.ernet.in/biodiversitsy)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BTIKS401.1	-	-	-	-	-	-	2	-	1	-	-	-	-	1	-
BTIKS401.2	-	1	-	-	-	1	2	-	1	-	-	1	-	1	-
BTIKS401.3	1	1	1	-	1	1	2	-	1	-	-	-	-	-	-
BTIKS401.4	1	1	1	-	1	1	2	1	1	-	-	1	1	1	_

COURSE: APTITUDE BUILDING-IV COURSE CODE: BTAEC401 LT P Hr C MARKS: 50 0 0 2 2

1

OBJECTIVE

- □ To enhance the logical reasoning skills of the students and help them improve the problem-solving abilities
- □ To acquire skills required to solve quantitative aptitude problems
- □ To boost the verbal ability of the students for academic and professional purposes

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTAEC401.1	Apply critical thinking skills, such as problem solving related to their subject matter
BTAEC401.2	Demonstrate competency in verbal, quantitative and reasoning aptitude
BTAEC401.3	Display good written skills for use in academic and professional scenarios
BTAEC401.4	Develop technical skills

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course.

Sr.	Practical/Training/Tests/Interviews	Contact
No.		Hours
1	Logical Reasoning	04
2	Data interpretation and Data sufficiency - Advanced	04
3	Time and work– Advanced	02
4	Time, Speed and Distance - Advanced	04
5	Profit and loss, Partnerships and averages - Advanced	02
6	Number system - Advanced	02
7	Choice and Instruments and protocols for solving biological	02
	problems	
8	Establishment of stable trans-gene expression in unicellular and	02
	multicellular systems	
9	Monoclonal antibodies, Biosimilars	02
10	Competitive Examination Preparation	02
11	Mock Interviews	02

12	Discussion session-Industry Experts/Academia Experts/Alumni	02
	TOTAL	30

METHODOLOGY

The course will be covered through Lectures/Assignments/Practical/Training/Tests/Interviews

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Continuous Internal Assessment		20
Attendance		
Assignments/Practical/Training/Test	s/Interviews	30
Total		50

BOOKS RECOMMENDED:

1. R. S. Aggarwal, (2017). Quantitative Aptitude for Competitive Examinations, 3rd (Ed.). New Delhi: S. Chand Publishing

2. ETHNUS, (2016). Aptimithra, 1st (Ed.). Bangalore: McGraw-Hill Education Pvt. Ltd.

3. Arun Sharma, (2016). Quantitative Aptitude, 7th (Ed.). Noida: McGraw Hill Education Pvt. Ltd.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
BTAEC401. 1	_	2	2	1	2	_	_	-	-	1	_	2	2	_	_
BTAEC401. 2	1	1	1	-	-	-	-	-	-	1	-	-	1	-	-
BTAEC401. 3	1	1	1	-	2	-	-	-	-	2	-	-	1	-	-
BTAEC401. 4	1	1	1	-	1	-	-	-	-	1	-	-	1	-	-

SEMESTER V							
Course Code	Course Name	L	Τ	Р	Hr	Cr	
BT 501	Environmental Biotechnology	2	0	2	4	3	
BT 502	Recombinant DNA Technology	2	0	4	6	4	
BT 503	BT 503 Biochemical Engineering & Bioprocess Technology				7	5	
BT 504 Enzymology & Enzyme Technology		2	0	2	4	3	
BI 501	R Programming	1	0	0	1	1	
BT 505/506/507	Elective-I	3	0	2	5	4	
BTSEC501	Science communication	0	0	2	2	1	
BTAEC501	Aptitude Building-V	0	0	2	2	1	
	Total	13	0	18	31	22	
Elective I (Biopharmaceuticals/ Clinical Research/ Human Diseases and Pathobiology)							

COURSE: ENVIRONMENTAL BIOTECHNOLOGY COURSE CODE: BT 501 MARKS: 100 (Theory 50 + Practical 50)

LTPHC 20243

OBJECTIVES:

The objective of the course is to familiarize the students with

- Basic concept in Environmental Biotechnology.
- Awareness on Pollution
- Advanced research area in the field of Environment

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BT 501.1	Classify types of pollution and illustrate application of biotechnology for a pollution-free environment
BT 501.2	Discuss different waste-water treatment systems and analyze the decay behavior of xenobiotic compounds
BT 501.3	Demonstrate the process of bioremediation and illustrate the management of hazardous waste
BT 501.4	Describe the role of biofuels in environmental sustainability and explore advanced systems for environmental management

PREREQUISITES

Since the course is very important in science, students must know about the new biotechnological methods which can be applied in the environment. Students must have a background with Biotechnological aspects and molecular genetics.

Unit	Торіс	Detail Syllabus	No. of Lectures
1	Environmental Biotechnology	Role of Biotechnology in protection and conservation of Environment	2
	Environmental Pollution	Types of Pollution and their sources (Water pollution, Soil Pollution, Air Pollution, Noise Pollution) Case studies and Innovative technologies for preventing pollution	4
2	Microbiology of waste water treatment	Aerobic System Biological processes for domestic and industrial waste water treatments; Aerobic systems - activated sludge process, trickling filters, biological filters, rotating biological contractors (RBC), Fluidized bed reactor (FBR), expanded bed reactor, Inverse fluidized bed biofilm reactor (IFBBR) packed bed reactors air- sparged reactors. Anaerobic System	6

		Anaerobic biological treatment - contact digesters, packed column reactors, UASB. Biofilms and its relevance in microbial survival	DUNITESITY
2	Microbiology of degradation of xenobiotics	Xenobiotics in environment Decay behavior of xenobiotics	3
3	Bioremediation	Bioremediation I & II Solid phase bioremediation - land farming, prepared beds, Phytoremediation, Composting, Vermicomposting technology	5
	Hazardous Waste Management & safety guidelines for disposed	Biotechnology application to hazardous waste Management Detoxification of chemical waste	3
4	Bio Fuels	 Microorganisms and energy requirements of mankind, Production of nonconventional fuels - Methane (Biogas), Hydrogen, Alcohols and algal hydrocarbons, Use of microorganisms in augmentation of petroleum recovery. Bioplastic-biopol, microbial rubber & adhesive polymers 	5
	Advances in Environmental Biotechnology	GIS in Environmental Management Computer based Environmental modeling Design of ETPs	2
		Total number of Lectures	30

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal*	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50
*Avanaga of Internal I (15 m	nonline) and Internal II (15 manline)	

*Average of Internal I (15 marks) and Internal II (15 marks)

PRACTICAL IN ENVIRONMENTAL BIOTECHNOLOGY 2 Hrs per week Marks:50 List of Practicals

- 1) Statistical design for collection of samples from site for Pollution Measurement
- 2) Techniques for sampling Air, Soil and Water to measure pollution
- 3) Air pollution by measurement of SOX (sulphur oxides-di), NOX (nitrous oxide-di) and suspended particulate matter.
- 4) Water pollution by measurement of water conductivity, pH, dissolved oxygen, and turbidity.
- 5) Soil pollution by measurement of metals and organic compounds.
- 6) Studying biological indicators of pollution for air (lichens), water (Macroinvertebrate) and soil (Moss) pollution.
- 7) Analysis of samples by comparison with Indian and Global standards and representation of the data graphically.
- 8) Microbial biodegradation (aerobic and anaerobic) of any one pollutant (e.g. hydrocarbon) or any xenobiotic and study of its decay behavior.
- 9) Bioremediation Monitoring uptake of heavy metals using biological methodsorganisms.
- 10) Demonstration for biogas production/Agro-waste composting/visit to wastewater plant/ biogas plant

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

REFERENCES:

- 1. Stanier R. Y., Ingram J.L., Wheelis M.L., Painter R.R., General Microbiology, McMillan Publications, 1989.
- 2. Foster C.F., John Ware D.A., Environmental Biotechnology, Ellis Horwood Ltd., 1987.
- 3. Karrely D., Chakrabarty K., Omen G.S., Biotechnology and Biodegradation, Advances in Applied Biotechnology Series, Vol.4, Gulf Publications Co. London, 1989.
- 4. Bioremediation engineering; design and application 1995 John. T. cookson, Jr. Mc Graw Hill, Inc.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 501.1	2	2	3	2	-	3	3	3	3	1	2	3	2	-	-
BT 501.2	3	3	3	3	3	3	3	2	1	2	2	3	2	1	-
BT 501.3	2	2	3	3	2	2	3	2	2	1	2	3	2	1	-
BT 501.4	3	2	2	2	3	3	3	3	2	2	2	3	2	1	1

COURSE: RECOMBINANT DNA TECHNOLOGY COURSE CODE: BT 502 MARKS:150 (Theory 50 + Practical 100)

L T P H C 2 0 4 6 4

OBJECTIVES:

To familiarize the student with

- emerging field of biotechnology i.e. Recombinant DNA Technology,
- genetic engineering concepts and techniques.

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BT 502.1	Apply the knowledge of molecular biology for genetic engineering using various gene manipulation tools
BT 502.2	Demonstrate different recombinant DNA techniques for manipulation of DNA, RNA and protein
BT 502.3	Employ different gene cloning strategizes to optimize various applications in genetic engineering
BT 502.4	Plan and employ different recombinant DNA techniques in healthcare and agricultural sector
BT 502.5	Apply genetic engineering techniques in diagnosis of human disorders and employ suitable therapies
BT 502.6	Outline cross disciplinary genetic engineering approaches along with ethical issues for commercialization of genetically modified products

Prerequisites: Knowledge of molecular biology is sufficient.

Unit	Topics	Detail Syllabus	No. of
			Lectures
1	Introduction	Landmarks in Molecular biology and Biotechnology	2
		What is genetic engineering and recombinant DNA technology?	
		Advantages of using microorganisms in Genetic Engineering	
		Genetic engineering in E. coli and other prokaryotes, yeast, fungi and	
		mammalian cells.	
	Tools in genetic	Enzymes: DNA polymerases, ligases, reverse transcriptases, nucleases	
	engineering	restriction endonucleases (Restriction modification system, Restriction	
		mapping) and, terminal transferases, phosphatases, polynucleotide Kinase	
		etc.	5
		Cloning vectors: plasmids, bacteriophage vectors, cosmids, phagemids	
		BAC, YAC vectors, Shuttle vectors, expression vectors etc.	
2	Recombinant	Polymerase chain reaction (PCR) and its types	
	DNA techniques	Molecular Probes and Nucleic acid labeling	

		Dr. D.Y. PATIL VIDYAPEE	TH, PUNE
		Blotting Techniques (Northern, Southern and Western) Autoradiography,	
		Hybridization, DNA foot printing, Electrophoretic mobility gel shift assay	
		(EMSA)	
		DNA sequencing, site directed mutagenesis and its applications	
		DNA fingerprinting, RAPD, RFLP, AFLP.	
		Different methods for analysis of gene expression	
3	Gene cloning	Isolation and purification of DNA (genomic, plasmid) and RNA.	7
		Isolation of gene of interest- restriction digestion, electrophoresis, Cutting and joining of DNA	
		Methods of gene transfer in prokaryotic and eukaryotic cells.	
		Methods for Recombinant selection and screening: genetic,	
		immunochemical, South-western analysis, nucleic acid hybridization,	
		HART, HRT	
		Expression of cloned DNA molecules and maximization of gene	
		expression	
		Cloning strategies- genomic DNA libraries, cDNA libraries, subtractive	
		hybridization, chromosome walking and jumping.	
4	Applications of		5
	Recombinant	approach, ex-vivo approach of gene therapy, Antisense therapy,	
	DNA	Interference technology (siRNA, shRNA, miRNA) CRISPR Cas 9	
	technology	mediated gene therapy, Transgenics	
5	Genetic	Prenatal diagnosis, Single nucleotide polymorphisms, DNA microarrays,	2
	disorders,	Future strategies.	
	Diagnosis and		
	screening		
6	Protein	Two-hybrid and other two component systems	2
	interaction	Detection using GST fusion protein, co-immunoprecipitation, FRET,	
	technology	BRET, Phage display assays, Surface plasmon resonance (SPR) etc	
	The Human	The Human Genome Project Objectives and its outcome.	1
	Genome Project	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
		Total no. of Lectures	30

METHODOLOGY : The course will be covered through lectures supported by PowerPoint presentations, research articles and practical teaching.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal*	45 min.	15
Teachers assessment		05
End Semester Examination	1 Hrs 15 min.	30
Total		50
* A	(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	

*Average of Internal I (15 marks) and Internal II (15 marks)

PRACTICAL IN RECOMBINANT DNA TECHNOLOGY (4 hours per week) Marks: 100 List of Practicals

- 1. Requirement of a genetic engineering lab including physical containment facilities and other biosafety procedures.
- 2. Culturing Escherichia coli K12.
- 3. Making competent cells for transformation.
- 4. Preparation of the vector DNA and target DNA, ligation and transformation.
- 5. Elution of DNA from Agarose gel.
- 6. Selection of transformants by Antibiotic resistance.
- 7. Selection of transformants by Blue-white screening.
- 8. Selection of transformants by Restriction analysis.
- 9. Preservation and storage of clones.
- 10. Cloning in expression vectors for expression of specific genes.
- 11. Target DNA amplification by polymerase chain reaction.
- 12. DNA fingerprinting technique RFLP/RAPD.
- 13. Bioinformatics tools in Genetic engineering.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	40
End semester examination:	60
Total:	100

REFERENCES:

- 1. Primrose, S.B. and Twyman, R. (2016). Principles of Gene Manipulation and Genomics. 'Eighth edition, John Wiley and Sons Ltd."
- 2. Richard J Reece. (2004). Analysis of gene and Genome. "Wiley".
- 3. Brown, T. A. (2016). Gene Cloning and DNA Analysis: An Introduction. "Seventh edition, Wiley-Blackwell".
- 4. Green, M.R. and Joseph Sambrook, J. (2014). Molecular Cloning A Laboratory Manual (Vol 1,2,3). "Fourth edition, Cold Spring Harbor Laboratory Press".
- 5. Hartl, D. L. and Cochrane, B (2019). Genetics: Analysis of Genes and Genomes. "Ninth Edition"
- Sambrook J. Molecular cloning: a laboratory manual. Vol.1 / J.Sambrook, D.W.Russell. 4th edition New York: Cold Spring Harbor Laboratory, 2012. III,
- 7. Fanglian He, Bio-protocol, standard DNA cloning DOI: <u>https://doi.org/10.21769/BioProtoc.52</u>
- 8. Owens CB, Szalanski AL, Filter paper for preservation, storage, and distribution of insect and pathogen DNA samples J Med Entomol. 2005 Jul;42 (4)
- 9. Williams JG, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.
- 10. Nucleic Acids Res. 1990 Nov 25;18(22):6531-5.

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

- 11. Ye J Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL, Primer BLAST: a tool to design target-specific primers for polymerase chain reaction BMC Bioinformatics. 2012 Jun 18;13:134. doi: 10.1186/1471-2105-13-134.
- 12. Vincze, T., Posfai, J. and Roberts, R.J. NEBcutter: a program to cleave DNA with restriction enzymes Nucleic Acids Res. 31: 3688-3691 (2003)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 502.1	3	1	1	1	3	1	1	1	1	1	1	3	3	2	1
BT 502.2	3	3	3	3	3	1	2	2	2	3	1	3	1	3	1
BT 502.3	3	3	3	3	3	2	2	2	3	2	2	3	3	1	1
BT 502.4	3	3	3	3	3	3	3	3	3	2	2	3	3	1	1
BT 502.5	3	3	3	3	3	3	2	3	3	2	3	3	3	1	1
BT 502.6	3	3	3	3	3	3	3	3	3	3	3	3	2	2	3

COURSE NAME: BIOCHEMICAL ENGINEERING AND BIOPROCESS TECHNOLOGY
COURSE CODE: BT503L T P H C
MARKS: 200 (Theory 100 + Practical 100)3 0 4 7 5

OBJECTIVES:

To familiarize the students with

- concepts of and basic principles in the subject with emphasis on how to apply the knowledge in industrial processes involving Biochemical Engineering.
- various industrial techniques such as Isolation, improvement, and preservation of microbial cultures.
- design of bioreactors and upstream and downstream processes.

CO No.	At the end of the course, the learner should be able to:
BT 503.1	Explain the basic concepts in biochemical engineering and bioprocess technology
BT 503.2	Demonstrate various techniques for isolation, preservation, and strain improvement of industrially important microbes
BT 503.3	Design a fermentation process by manipulating the media, inoculum, sterilization techniques and bioreactors
BT 503.4	Demonstrate different downstream processing methods employed to purify the desired products
BT 503.5	Determine the bioprocess kinetics of different cultures and understand fluid rheology, product formation and mass transfer
BT 503.6	Plan and design bioprocess scale up methods to produce useful metabolites

COURSE OUTCOMES:

PREREQUISITES

This is an introductory level course. Students are expected to have an understanding of introductory knowledge in Physics, Chemistry and Biology.

Unit	Торіс	Detail Syllabus	No. of
			Lectures
1.	Introduction to	Historical background of Biochemical engineering,	2
	Biochemical	Introduction of industrially important	
	Engineering and	biotechnologically products	
	Bioprocess Technology		
2.	Isolation of microbes	Isolation and preservation of industrially important	3
	and Strain improvement	microbes and introduction of strain improvement	
3	Design of fermentation	Nutritional media components essential for growth	4
	media and inoculum	of microorganisms and product formation, Media	
	development	optimization using conventional and statistical	

	Toto	l Number of Lectures	45
		downstream processing	
	Biosynthesis of Metabolites	Examples of Industrial Production of few metabolites starting from inoculum development to	4
		Introduction to Bioprocess Economics	
	Economics	consideration of important parameters for scale up,	
6	Scale up, Bioprocess	Concept of scale up and scale down and	2
		rate	
		different phase systems, KLa and oxygen transfer	
	Transfer	fluids and rheology, Mass transfer concepts in	
	Fluid flow and Mass	Introduction to Newtonian and Non-Newtonian	4
		kinetics and Cell death kinetics	
		continuous, fed-batch culture, Plug flow bioreactor, Product formation kinetics, Substrate utilization	
		bioreactors, Kinetics of microbial growth, Batch,	
		concept with examples, ideal and nonideal	
5	Bioprocess Kinetics	Introduction of Stoichiometric analysis and yield	10
		metabolites, Purification of metabolites	
4	Downstream Processing	Cell separation techniques, Concentration of	6
		sterilization of liquid waste	
5	SIGHIZAUUII	processes), Feed sterilization, filter sterilization and	5
3	Sterilization	Sterilization of Fermenter (batch and continuous	3
		bioprocess parameters, process control, Data analysis during process	
	control	-	
	Instrumentation and	animal origin, Sensors for measurement of different	
	types of Bioreactors,	Bioreactor types for products of microbial, plant and	1
	Design of Fermenter,	and yeast strainsDesign of fermenter and its important parts,	7
		designs, Inoculum development for bacterial, fungal	

METHODOLOGY

The course will be covered through lectures supported by tutorials and laboratory practical's. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

PRACTICALS IN BIOCHEMICAL ENGINEERING AND BIOPROCESS TECHNOLOGY (4 Hrs. Per Week) MARKS: 100

List of Practicals

- 1. Isolation of industrially important microorganisms by screening methods such as enzyme producer, antibiotic producer etc.
- 2. Introduction of different Preservation techniques of industrially important microorganisms.
- 3. Demonstration of various parts of lab scale fermenter and study of bioreactor design.
- 4. Study of microbial growth kinetics and growth curve. Determination of growth rate constant, generation time, specific growth rate and saturation constant.
- 5. Production of alpha amylase by solid state fermentation and downstream processing for recovery of enzyme and determination of enzyme activity.
- 6. Production of streptomycin/penicillin antibiotic by fed batch fermentation
- 7. Determination of antibiotic activity of streptomycin/penicillin.
- 8. Production of bioethanol from sugarcane juice and molasses.
- 9. Downstream processing for recovery of bioethanol by simple distillation and chemical estimation of bioethanol.
- 10. Production of citric acid using *Aspergillus niger* by surface and submerged fermentation and study of rheological parameters.
- 11. Recovery of citric acid by precipitation method and chemical estimation of citric acid.
- 12. Determination of K_{La} by sulphite oxidation method.
- 13. Determination of thermal death point and thermal death time of different microorganisms.
- 14. Immobilization of whole cells for demonstration of its biological activity.
- 15. Industrial visit to fermentation industry.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) Assessment	40
End semester Exam	60
Total	100

REFERENCES:

- 1. P. F. Stanbury, A. Whitaker and S. J. Hall. 'Principles of Fermentation Technology', Pergamon Press, Oxford and revised editions 1995.
- 2. J. E. Bailey, D. F. Ollis Biochemical Engineering Fundamentals, 2nd edition, McGraw-Hill, New. York) and revised editions 1986.

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

- 3. Pauline Doran, Bioprocess Engineering Principles, Academic Press (1995) and revised editions.
- 4. Shuler, ML and F. Kargi. Bioprocess. Engineering: Basic Concepts (Second Ed.). Prentice Hall, Englewood Cliffs, NJ. 2002.
- 5. A.H. Patel. Industrial Microbiology. MacMillan 2000.
- 6. Casida, L E JR Industrial Microbiology, Wiley Eastern (revised editions) 1984.
- Manual of Industrial Microbiology and Biotechnology, (2nd Edition by Arnold L. Demain and Julian E. Davies, Ronald M. Atlas, Gerald Cohen, Charles L. Hershberger, Wei-Shou Hu, David H. Sherman, Richard C. Willson and J. H. David Wu)
- Industrial Microbiology-An introduction (By Michael J. Waites, Neil L. Morgan, John S. Rockey and Gary Higton)
 Principles of Fermentation Technology
- Principles of Fermentation Technology (2nd edition, by Peter F. Stanbury, Allan Whitaker and Stephen J. Hall, Butterworth-Heinemann, An imprint of Elsevier Science
- 10. Fermentation and Enzyme Technology By D.I.C. Wang, C.L. Cooney, A.L. Demain, P. Dunnill, A.E. Humphrey & M.D. Lilly John Wiley and sons, New York

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 503.1	2	-	1	3	-	2	-	-	3	3	-	3	3	2	1
BT 503.2	1	2	3	2	3	2	3	2	2	2	2	3	3	2	1
BT 503.3	2	2	3	3	3	2	3	3	2	1	3	2	3	2	2
BT 503.4	1	3	3	3	2	1	2	2	3	2	3	3	3	2	2
BT 503.5	2	2	3	3	2	1	2	2	2	3	2	3	3	2	2
BT 503.6	3	2	3	3	3	2	3	2	3	2	3	3	3	2	3

COURSE: ENZYMOLOGY AND ENZYME TECHNOLOGY COURSE CODE:BT 504 MARKS: 100 (Theory 50 + Practical 50)

L T P H C 2 0 2 4 3

OBJECTIVES:

To familiarize the student with

- enzyme classification, enzyme-substrate interactions as well as mechanism of enzyme action
- thorough understanding regarding kinetics of allosteric and non allosteric enzymes.
- knowledge about modeling of enzyme systems and structure-function relations in enzymes.
- Immobilization techniques and applications.

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BT 504.1	Classify enzymes on the basis of their attributes, naming conventions, features, and mechanism of action
BT 504.2	Apply biochemical computations for determining the kinetics of enzymes
BT 504.3	Compare and contrast the techniques for production, purification, identification, and immobilization of enzymes
BT 504.4	Comprehend advances in enzyme technology and enzyme engineering

PREREQUISITES

This is an advanced course. The student should be aware of basics in enzymology as well as some fundamental aspects of biomolecules and chemistry.

Unit	Topics	Detail Syllabus	No. of Lectures
1	Enzymes	Classification: Trivial and Enzyme Commisions System of nomencleature C system, Properties of enzymes. Enzyme substrate interactions, enzyme substrate complex, concept of active site, transition state theory. Factors affecting enzyme activity: Effect of pH, temperature and substrate concentration on reaction rate	6
	Mechanism of enzymatic Reactions	 Enzyme Catalysis: Factors affecting catalytic efficiency proximity and orientation effects. Bisubstrate reactions: single and double displacement reactions. Enzyme catalysis: acid-base, covalent and metal ion. Chemical modification of enzymes. Isoenzymes and multiple forms of enzymes. 	5
2	Enzyme Kinetics	 Enzyme activity, international Unit, specific activity, turnover number. Michaelis Menten equation, Significance of Km and Vmax, Enzyme inhibition and kinetics: competitive, non competitive, uncompetitive and mixed. Structure-Function Relations: chymotrypsin, lysozyme, metalloenzyme . 	8

Technology	engineering, artificial enzymes.	30
Enzyme	Recent advances in enzyme technology, enzyme	2
	medicine, diagnostics, leather industry, textile industry.	
applications	Applications of enzymes: Food processing,	
applications	covalent binding (based on R groups of amino acids), microencapsulation and gel entrapment.	
Enzyme Immobilization and	Methods of immobilization: ionic binding, adsorption,	4
	modification and Zymogen activation.	A
Regulations	Enzyme Regulation: Feedback inhibition, covalent	
Enzyme	models, kinetics of Allosteric enzymes.	
interactions and	cooperativity, theory of concerted and sequential	
Allosteric	Allosteric enzymes : Types, positive and negative	5
	netanoenzyme .	
	metalloenzyme .	
	non competitive, uncompetitive and mixed. Structure-Function Relations: chymotrypsin, lysozyme,	
	Vmax, Enzyme inhibition and kinetics: competitive,	
	Michaelis Menten equation, Significance of Km and	
	turnover number.	
Enzyme Kinetics	Enzyme activity, international Unit, specific activity,	8

METHODOLOGY

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal*	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

*Average of Internal I (15 marks) and Internal II (15 marks)

PRACTICAL IN ENZYMOLOGY AND ENZYME TECHNOLOGY (2 Hrs. Per Week) MARKS: 50

- 1. Handling of enzyme and estimation of specific activity of amylase enzyme.
- 2. Handling of enzyme and estimation of specific activity of phosphatase enzyme.
- 3. Handling of enzyme and estimation of specific activity of protease enzyme.
- 4. Isolation of β -amylase from sweet potato (*Ipomoea batatas*) and determination of enzyme activity using specific substrate.
- 5. Isolation of β -amylase from barley (*Hordeum vulgare*) and determination of enzyme activity using specific substrate.
- 6. Purification of enzyme by ammonium sulphate precipitation.
- 7. Effect of physicochemical parameters (pH, temperature) on the activity of enzyme.
- 8. In situ enzyme activity staining on SDS-Polyacrylamide gel. (Amylase, Lactate dehydrogenase).

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

- 9. Immobilization of enzyme by gel entrapment and cross linking method.
- 10. Study on enzyme inhibition.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

REFERENCES:

- Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic proteins by Nicholas C. Price and Lewis Stevens; 3rd edition, 2010
- 2. Enzymes: Biochemistry, Biotechnology, Clinical Chemistry by Trevor Palmer; 2nd edition, 2008
- Enzyme Technology by Ashok Pandey, Colin Webb, Carlos Ricardo Soccol, Christian Larroche, 2005
- 4. Principles of Biochemistry by Lehninger, Nelson Cox, 4th edition, 2017
- 5. Biochemistry by Lubert Stryer, 4th edition,1995
- Bernfeld P. Amylases α and β. Methods in Enzymology Volume I. Elsevier, Science Direct. G; 1955, Page 149-158.
- Plummer DT. Introduction to Practical Biochemistry, third edition. Tata McGraw-Hill Edition; 1998.
- Jakoby WB. [23] Crystallization as a purification technique. Methods in Enzymology. 1971 Dec 31; 22:248-52.
- Seligman AM, Chauncey HH, Nachlas MM, Manheimer LH, Ravin HA. The colorimetric determination of phosphatases in human serum. Journal Of Biological Chemistry. 1951; 190:7-15.
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15; 227(5259):680-5.
- Raymond S, Weintraub L. Acrylamide gel as a supporting medium for zone electrophoresis. Science. 1959 Sep 18; 130(3377):711-711.
- Methods in Biotechnology, Vol 1, Immobilization of Enzymes and Cells Edited by Bickerstaff G. F., Humana Press, Inc, Totowa, N. J. 2006.
- Meena K, Raja TK. Immobilization of yeast invertase by gel entrapment. Indian Journal of Biotechnology. 2004; 3: 606-608.
- Strelow J, Dewe W, Iversen PW, Brooks HB, Radding JA, McGee J, Weidner J. Mechanism of Action assays for Enzymes. 2012.
- 15. Eisenthal R, Danson MJ, editors. Enzyme assays: a practical approach. Practical Approach (Paperback); 2002.

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 504.1	2	3	3	3	-	1	-	-	2	2	2	3	2	2	-
BT 504.2	3	3	2	2	2	1	-	-	2	2	3	3	2	2	1
BT 504.3	3	3	3	2	1	1	2	2	2	1	2	3	2	1	1
BT 504.4	2	2	1	2	2	3	2	2	2	3	3	3	3	2	1

Matrix for Program Outcome and Program Specific Outcome

COURSE: R PROGRAMMING

COURSE CODE: BI 501 MARKS: 50 (Theory only)

L T P H C 1 0 0 1 1

OBJECTIVES:

To familiarize the student with

- data structures and file handling features
- the basics of statistical computing and data analysis.
- various packages

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BI 501.1	Apply the essential concepts of R programming
BI 501.2	Use various data structures for writing programs
BI 501.3	Apply data and file handling features in writing a program
BI 501.4	Implement statistical packages in R programming for analyses of biological data

Prerequisite –

In depth knowledge of C programming is required, understanding of statistics & data structure, basic knowledge of Molecular Biology, Genetics, Biochemistry and Computer aided drug designing. **COURSE DESCRIPTION**

Unit	Торіс	Detail Syllabus	No. of
			Lectures
1	Introduction and basics	What is R?	2
	of R	History of R	
		Features of R	
		Uses of R	
		Applications of R	
		Data types	
		Escape Sequences	
		Variables	
		Keywords	
		Operators	
		Control statements and loops	
	Data Structures	Vectors	2
		Lists	
		Arrays	
		Matrix	
		Data Frames	
		Factors	
2	Data and File Handling	Reading and writing data	2
		R CSV file	
		R Excel file	
		R XML file	

143

			Dr. D.Y.			
		R Database				
3	R Statistics	R Mean, Median & Mode	5			
		R Linear Regression				
		R Normal Distribution				
		R Binomial Distribution				
		R Time Series Analysis				
		R Random Forest				
		R Chi Square Test				
		Support with the machine				
		Neural network				
		Nearest neighbor				
	R Graphics	R Plot, R Line, R Pie Chart, R Bars	2			
4	R applications in	Use various R functions to solve	2			
	Biotechnology	biological problems				
	Total Number of Lectures					

METHODOLOGY:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EXAMINATION SCHEME (THEORY)

Examination	Duration	Marks
Internal*		15
Attendance		5
End Semester Exam		30
Total		50
* Average of Internal I (1	15 marks) and Internal II (15 marks)

* Average of Internal I (15 marks) and Internal II (15 marks)

REFERENCES:

- 1. Thulin, M. (2024). Modern Statistics with R: From wrangling and exploring data to inference and predictive modelling. CRC Press
- 2. Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science. " O'Reilly Media, Inc.".
- 3. Weinberg, S. L., Harel, D., & Abramowitz, S. K. (2023). Statistics using R: an integrative approach. Cambridge University Press.
- 4. Kabacoff, R. (2022). R in action: data analysis and graphics with R and Tidyverse. Simon and Schuster
- 5. Wimberly, M. C. (2023). Geographic Data Science with R: Visualizing and Analyzing Environmental Change. Chapman and Hall/CRC.

DEPUTION

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

													(D	EEMED UNIVERSITY)	
	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1														
BI 501.1	3	2	2			2			2	2		3	2	1	
BI 501.2	3	2	2			2			2	2		3	2	2	1
BI 501.3	3	3	3			3			3	3		3	2	2	2
BI 501.4	2	2	2	1	3	2		1	2	2	2	2	2	2	3

Elective I COURSE: BIOPHARMACEUTICALS COURSE CODE: BT 505 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVES:

To familiarize the student with

- general understanding regarding basic knowledge of Biopharmaceuticals
- the production techniques, mode of action and therapeutic uses of Biopharmaceuticals.

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BT 505.1	Explain the scientific methods and protocols used for the discovery and development of biopharmaceuticals
BT 505.2	Acquire knowledge of good manufacturing practices and recognise their importance in the formulation of biopharmaceutical products
BT 505.3	Explain the uses of recombinant DNA and hybridoma technology in the discovery and development of biopharmaceuticals
BT 505.4	Demonstrate the significance of blood products and enzymes in biopharmaceuticals
BT 505.5	Explain the wound healing process and significance of various growth factors in the process
BT 505.6	Apply the knowledge of gene therapy and antisense technology in the production of biopharmaceuticals, and explain the production of monoclonal antibodies, vaccines and biosimilars

PREREQUISITES

Students should know the basics of Microbiology, Biochemistry

COURSE DESCRIPTION

Unit	Topics	Detail Syllabus	No. of
			Lectures
1	Overview	Introduction and current status of Biopharmaceuticals in the pharmaceutical industry. How are Biopharmaceuticals different from	3
		Pharmaceutical products	
2	The drug manufacturing process	Good Manufacturing Practices: Cleanroom, cleaning, documentation and sanitation (CDS), preparation of purified water and water for injection for the biopharmaceutical processing, Source of Biopharmaceuticals: <i>E.coli</i> as a source of recombinant, transgenic animals, and transgenic plants Analysis of final biopharmaceutical products: Detection of protein-based product impurities, pyrogen detection, endotoxin assay, and immunological approaches	9

3	Hormones of		8
	therapeutically	Insulin, Insulin receptors, production of human insulin by	
	interest	rDNA technology, insulin formulation, and Glucagon	
4	Blood products and	Anticoagulants: Hirudin, Vitamin K, and Antimetabolites,	8
	therapeutic enzymes	Oxygen carrying blood substitutes: Albumin, Dextran,	
		and Gelatin	
5	Growth factors and	Insulin growth factor (IGF), Epidermal growth factor	8
	wound healing	(EGF), and Platelet derived growth factor (PDGF), Wound	
		healing process	
6	Vaccines and	Vaccines: Types of vaccines, peptide vaccine, and vaccine	9
	Nucleic acids	vectors	
	therapeutics	Basic approach to gene therapy: Types of gene therapy	
		vectors	
		Antisense technology: Uses, advantages, and limitations	
	•	Total Number of Lectures	45

METHODOLOGY

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	20
II Internal	45 minutes	15
Teachers assessment		5
End Semester Exam	2 hours 30 minutes	60
Total		100

PRACTICALS IN BIOPHARMACEUTICALS (2 Hrs. Per Week) MARKS: 50

- 1. Chemical assay for estimation of penicillin Antibiotics.
- 2. Chemical assay for estimation of streptomycin Antibiotics.
- 3. Chemical assay for estimation of tetracycline Antibiotics.
- 4. Bioassay to determine the antifungal activity of standard Aureofungin.
- 5. Bioassay to determine the antifungal activity of standard clotrimazole.
- 6. Bioassay to determine the antifungal activity of standard fluconazole.
- 7. Bioassay to determine the antibacterial activity of standard penicillin, streptomycin, tetracycline antibiotics by standard disc method.
- 8. Bioassay to determine the antibacterial activity of standard penicillin, streptomycin, tetracycline antibiotics by standard well method.
- 9. Sterility testing of commercial injectable such as saline water eye drops or ear drops
- 10. Extraction and detection of antimicrobial compounds from plant origin
- 11. Determination of glucose in serum/plasma by GOD/POD method
- 12. Determination of endotoxin in the therapeutic formulation (WFI, gentamycin injection, ampicillin injections) by using LAL test reagent
- 13. Determination of SGPT/SGOT activity in serum / plasma sample by chemical method

PI

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

- 14. LIMIT test for chloride, sulphates, iron and heavy metals in pharmaceutical products
- 15. One day industrial visit to a pharmaceutical company

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment	20
End semester examination:	30
Total:	50

REFERENCES:

- 1. Biopharmaceuticals- Biochemistry and Biotechnology. Second Ed. Garry Walsh. John Wiley and Sons. 2003.
- 2. Kayser O, Warzecha H. Pharmaceutical biotechnology: drug discovery and clinical applications. John Wiley & Sons; 2012.
- 3. Beale JM, Block J, Hill R. Organic medicinal and pharmaceutical chemistry. Philadelphia: Lippincott Williams & Wilkins; 2010.
- 4. Foye WO. Foye's Principles of Medicinal Chemistry. Lemke TL, Williams DA, editors. Lippincott Williams & Wilkins; 2008
- 5. Lachman, Leon et al. "The Theory and Practice of Industrial Pharmacy", 3rd Edition, Varghese Publishing House, 1986.
- 6. Husain A, Practical Pharmaceutical Analytical Techniques, Darshan Publishers, 2015
- 7. Indian Pharmacopeia, 2007, Volume 1, Published by The Indian Pharmacopeia Commission, Ghaziabad; Tests for pyrogens

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 505.1	2	1	1	-	-	1	1	1	1	2	1	1	2	1	1
BT 505.2	2	2	2	1	1	2	3	3	1	2	2	3	2	2	3
BT 505.3	3	2	3	2	2	2	1	1	1	3	3	3	3	2	3
BT 505.4	3	3	3	1	1	2	1	2	1	3	2	3	3	2	3
BT 505.5	3	2	1	1	1	2	1	2	1	3	2	3	3	2	3
BT 505.6	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3

LT P H C

3 0 2 5 4

Elective I COURSE: CLINICAL RESEARCH COURSE CODE: BT 506 MARKS: 150 (Theory 100 + Practical 50)

OBJECTIVE

To familiarize the student with

- various disciplines in the field of clinical research
- importance of various methods involved in research

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BT 506.1	Outline the importance of various clinical research phases and ethical guidelines related to clinical trials
BT 506.2	Explain the different steps involved in clinical trials
BT 506.3	Perform unbiased data monitoring and analysis as per good clinical practice
BT 506.4	Assess adverse events and health-related quality of life in clinical trials
BT 506.5	Determine the trial completion, implication, follow-up, reporting, and new drug application procedures
BT 506.6	Acquire awareness about the current situation of clinical research including updated regulations in India and the future of clinical research

PREREQUISITE:

Students should be familiar with biology and basic statistics to take up this course.

COURSE DESCRIPTION

Unit	Торіс	Detail Syllabus	No. of
			Lectures
1	Introduction to clinical trials	History & background of origin of clinical research; Drug development process and phases of clinical trials (CT); Terminology in clinical research	3
	Introduction to different clinical guidelines and ethics	Ethics in clinical research; Introduction to different clinical guidelines (Schedule Y, DGCI, ICMR, ICH- GCP); Principles of ICH-GCP, US Food and Drug Administration (USFDA); Medicines and Healthcare Products Regulatory Agency (MHRA): Overview, European Agency for Evaluation of Medicinal Products (EMEA), Ethical guidelines for biomedical research on human participants (as given in ICMR); Indian Good Clinical Practices; Clinical trial application requirements (IND,NDA,ANDA, orphan drugs); Informed consent; Ethical committee (EC)-constitution; Roles & responsibilities; Communication with EC	5

Design of the study

Initiation of recruitment

Clinical data monitoring and

analysis

ę	grated BIOTECHNOLOGY	DE D.Y. PATIL VIDYAPEETH, PU
	Planning a protocol: an overview; Selection of	8
	questions, Defining the study population; Types of	
	study design; Response variables and measurement;	
	Bias and elimination of bias - Types and mechanics of	
	randomization; Types of blinding in trials and methods	
	of protecting blind design	
	Sample size calculation; Recruiting participants;	3
	Baseline assessment	
	Case report form (CRF); CRF Tracking, Data entry	7
	processing; Data validation and discrepancy	
	management; Quality monitoring of the data;	
	Minimizing poor quality data; Data analysis;	
	Competing events; Co-variance adjustment; Subgroup	
	analysis; Cut-points; Meta-analysis	
	Adverse effect: Health related quality of life: adherence	5

4.	Impact analysis	Adverse effect; Health related quality of life; adherence and survival analysis	5
5.	Termination and reporting	Closeout- Termination of the trial; Procedure of termination; Post study follow up; Evaluation of the trial; Reporting a trial; Interpretation and publication bias; Comparing results between studies, clinical implication of the findings, Multicenter trials, Globalization of trials, Drug approval- Indian scenario and US FDA, EU	9
6.	Other components of clinical research	Medical writing; Pharmacoepidemiology; Pharmacovigilance; B.A./B.E. Studies; Overview of the on-going clinical trials in India	5
		Total	45

METHODOLOGY

2

3.

The course will be covered through lectures and demonstrations.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

PRACTICAL IN CLINICAL RESEARCH

(2 Hrs. Per Week) MARKS: 50

- List of Practicals
 - 1. Drafting of Informed Consent Form/Assent Form
 - 2. Drafting of CRF
 - 3. Visit to clinical
 - 4. research setting (Industrial/Hospital based)

Sr.	Name of the	Learning objective	Literature/ Weblinks for	No. of
No.	experiment		reference and videos	Lectures
1.	Drafting of	To know about the patient consent	https://cdsco.gov.in/opencm	2
	Informed Consent	form and ways to exchange	s/opencms/en/Home/	
	Form/Assent	information with patients and		
	Form-	medico-legal requirements	https://www.who.int/ethics/revi	
			ew-	
			committee/informed_consent/e	
			n/	
2.	Drafting of CRF	To understand the documentation	Bellary S, Krishnankutty B,	2
		for patient recruit	Latha MS. Basics of case	
			report form designing in	
			clinical research. Perspect	
			<i>Clin Res.</i> 2014;5(4):159-	
			166. doi:10.4103/2229-	
			3485.140555	
3.	Visit to clinical	To understand the set up of a	Fundamentals of clinical	4
5.	research setting	clinical research unit and its	trials	
	(Industrial/Hospital	working.		
	` I	working.		
	based)			

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

REFERENCES:

- 1. Fundamentals of clinical trials, by Friedman, LM; Furberg, CD; Demets, DL; 2015. ISBN 978-1-4419-1585-6, Publisher Springer
- 2. Clinical Trials Handbook: Design and Conduct, Cutis L. Meinert, ISBN 978-1-1182-1846-4, Publisher Wiley
- Fundamentals of clinical trials, by Friedman, LM; Furberg, CD; Demets, DL; 2015. ISBN 978-1-4419-1585-6, Publisher Springer
- 4. Bellary S, Krishnankutty B, Latha MS. Basics of case report form designing in clinical research. *Perspect Clin Res.* 2014;5(4):159-166. doi:10.4103/2229-3485.140555
- 5. https://cdsco.gov.in/opencms/opencms/en/Home/
- 6. https://www.who.int/ethics/review-committee/informed_consent/en/

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

													Dr. D.Y. PATI	L VIDYAPEETH, P MED UNIVERSITY)	UNE
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 506.1	3	3	3	-	-	3	3	3	2	1	1	3	1	1	3
BT 506.2	3	3	3	-	-	3	3	3	3	3	3	3	3	3	3
BT 506.3	3	3	3	3	3	3	1	3	2	3	3	3	3	3	2
BT 506.4	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3
BT 506.5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
BT 506.6	2	3	3	2	2	3	3	3	3	3	3	3	3	3	3

Elective I COURSE: HUMAN DISEASES AND PATHOBIOLOGY COURSE CODE: BT 507 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVES:

To familiarize the student with

- an understanding regarding various human diseases.
- various infectious and non-infectious diseases.

CO No.	At the end of the course, the learner should be able to:
BT 507.1	Outline the characteristics of diseases and identify types of laboratories for disease investigation
BT 507.2	Illustrate various human pathogens and explain the effect of microbial virulence factors
BT 507.3	Describe the prevention and treatment of infectious diseases
BT 507.4	Discuss the disorders of endocrine and immune systems including autoimmune disorders
BT 507.5	Comprehend signs, symptoms, diagnosis, and treatment of digestive and cardiovascular disorders
BT 507.6	Identify diseases associated with aging, and examine the importance of disease management

COURSE OUTCOMES:

PREREQUISITES

Since the course is advance in nature knowledge in microbiology, human anatomy and physiology is required.

Unit	Topics	Detail Syllabus	No. of Lectures
1.	Introduction to nature and investigation of diseases	Introduction to health and disease Characteristics and features of diseases Classification of disease Epidemiology Investigating diseases: Types of pathology laboratories, role and evaluation of hospital laboratory tests.	7
2.	Pathogens and virulence	Introduction to pathogens, parasites and types of infection Types of pathogens : Bacteria, Fungi, Helminths, Prions, Protozoans and Viruses Types and effects of microbial virulence factors (offensive and defensive).	6

			(DEEMED UNIVERSITY)
3.	Infectious disease and treatments	Bacterial infections of skin, eye, ear, central nervous system, respiratory system urogenital system and gastrointestinal system Viral infections of central nervous system, respiratory system, urogenital system and gastrointestinal system Fungal infections of skin and respiratory system Systemic infections, Sepsis, Prevention and treatment of infections (with antibiotics, antiviral combination therapy and surgery)	5
4	Disorders of immune system	Introduction to the defense system and types of immunodeficiency diseases Signs, symptoms, diagnosis and treatments of i) Primary immunodeficiency diseases : SCID, CVID, Transient hypogammaglobulinemia, DiGeorge Anomaly and Wiskott-Aldrich Syndrome ii) Autoimmune Disorders: Rheumatoid Arthritis, Systemic Lupus Erythematosus and Myasthenia Gravis iii) Immunological Hypersentivities: Type I to IV	6
	Disorders of the endocrine system	Introduction to endocrine system and its disorders Signs, symptoms, diagnosis and treatments of disorders linked to a) Growth hormones : Acromegaly, Gigantism b) Thyroid Glands: Hypothyroidism and Hyperthyroidism c) Adrenal Glands: Addison disorder and Cushing syndrome d) Pancreas: Diabetes Mellitus e) Reproductive hormones : i) Male: Hypogonadism, Gynecomastia ii) Female: Amenorrhea and PCOS Causes and treatment of infertility in men and	6
5	Disorders of digestive system	women Introduction to GIT and common disorders eg: Gastritis, Ulcers	5
		Signs, symptoms, diagnosis and treatments of Cholelithiasis, Hepatitis, Hernia, and Crohn disease	

2
2
3
5
1 DE

METHODOLOGY

The course would be covered through lectures, group discussions, teaching aids and would be supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

PRACTICAL IN HUMAN DISEASES AND PATHOBIOLOGY (2 Hrs. Per Week) MARKS: 50

- 1. Introduction to pathogens/parasites (e.g., bacteria, protozoans, arthropods etc.) including disease causing stages in their life cycle using permanent slide preparations/images.
- 2. Identification of microbes\$ using indicator media (e.g., Blood Agar)
- 3. Common and rare skin diseases/disorders in a population (based on the cases in the outpatient unit of Department of Dermatology, DPU Medical College and Hospital)#.
- 4. Metabolic and immune disorders in a population (based on the cases in the outpatient unit of Departments of Pathology and General Medicine, DPU Medical College and Hospital)#.
- 5. Sexually transmitted diseases in a population (based on the cases in the outpatient unit of Department of Venereology, DPU Medical College and Hospital)#.
- 6. Clinical methods (eg: X-ray, CT scan etc.) used in diagnosis of common diseases (at the Departments of Radio-diagnosis, Pathology and Microbiology, DPU Medical College and Hospital)#.
- 7. Study the implications of viral infections in the context of biomedical research (by visiting a research organization) #.

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Introduction to pathogens/parasites (e.g., bacteria, protozoans, arthropods etc.) including disease causing stages in their life cycle using permanent slide preparations/images.	Familiarize with various pathogens/parasites and understanding the relationship between pathogen-disease relationships.	https://www.cdc.gov/
2.	Identification of microbes\$ using indicator media (e.g., Blood Agar).	Understand how indicator media are used to broadly predict the presence of a specific microbe.	Microbiology–A Laboratory Manual. 7th ed Cappuccino. J, Sherman. N Pearson Education Publishing, Inc: 2005.
3.	Common and rare skin diseases/disorders in a population (based on the cases in the outpatient unit of Department of Dermatology, DPU Medical College and Hospital)#.	Understand the clinical presentation, pathogenesis, diagnosis and treatment of skin diseases/disorders in a population.	 a) https://medlineplus.gov/magazine /issues/fall08/articles/fall08pg22- 25.html b) http://www.healthline.com/health/ skin-disorders c) Literature procured from the Department of Dermatology, DPU Medical College and Hospital.
4.	Metabolic and immune disorders in a population (based on the cases in the outpatient unit of Departments of Pathology and General Medicine, DPU Medical College and Hospital)#.	Understand the clinical presentation, pathogenesis, diagnosis and treatment of	a) https://medlineplus.gov/metabolic disorders.html b) https://medlineplus.gov/immunes ystemanddisorders.html

			Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)
		metabolic/immune	c) Literature procured from the
		disorders	Departments of Pathology and
			General Medicine, DPU
			Medical College and Hospital.
5.	~	Understand the clinical	a)
	population (based on the cases in	presentation,	https://medlineplus.gov/sexuallytr
	the outpatient unit of Department	pathogenesis,	ansmitteddiseases.html
	of Venereology, DPU Medical	diagnosis and	b) Literature procured from the
	College and Hospital)#.	treatment of sexually	Department of Venereology, DPU
		transmitted diseases.	Medical College and Hospital.
6.	Clinical methods (eg: X-ray, CT	Familiarize with the	a)
	scan etc.) used in diagnosis of	common clinical	http://www.who.int/topics/diagno
	common diseases (at the	diagnostic methods.	stic_techniques_procedures/en/
	Departments of Radio-diagnosis,		b) Literature procured from the
	Pathology and Microbiology,		Departments of Radio-diagnosis,
	DPU Medical College and		Pathology and Microbiology,
	Hospital)#.		DPU Medical College and
	1		Hospital.
7.	Study the implications of viral	Familiarize with the	a)
	infections in the context of	biology of viruses,	https://medlineplus.gov/viralinfec
	biomedical research (by visiting a	diseases caused and	tions.html
	research organization) #.	current research	b) Literature procured from the
		landscape.	organization.
		L	- C
L		L	

\$ Non-pathogenic strains would be used for the experiment.

Students are to take note on the practical carried out and the observations made during visit to the Medical College and Hospital or other research institutes/centres. Practical examination would involve questions based on what has been studied/demonstrated in these visits.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

RECOMMENDED BOOKS

- 1. Biology of Disease, by Nessar Ahmed, Maureen Dawson, Chris Smith, Ed Wood, **Publisher:** Taylor & Francis; **ISBN-13:** 978-0748772100
- 2. Gordis, L. (2004). *Epidemiology*. Third edition. Philadelphia: Elsevier Saunders. (The second edition is also acceptable.)
- 3. https://www.cdc.gov/
- 4. Microbiology–A Laboratory Manual. 7th ed Cappuccino. J, Sherman. N Pearson Education Publishing, Inc: 2005.
- 5. https://medlineplus.gov/magazine/issues/fall08/articles/fall08pg22-25.html
- 6. http://www.healthline.com/health/skin-disorders
- 7. Literature procured from the Department of Dermatology, DPU Medical College and Hospital.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 507.1	2	2	2	-	1	1	1	-	1	-	1	1	2	-	-
BT 507.2	2	2	2	-	-	1	-	-	-	-	1	1	2	-	-
BT 507.3	2	2	2	1	1	1	-	-	-	-	1	1	2	-	-
BT 507.4	2	2	2	1	1	1	-	-	-	-	1	1	2	2	-
BT 507.5	2	2	2	1	1	1	-	-	-	-	1	1	2	2	-
BT 507.6	2	2	2	2	1	1	-	1	-	-	1	1	2	2	-

COURSE: SCIENCE COMMUNICATION COURSE CODE: BTSEC501 MARKS: 50 (Practical only)

L	Т	Р	Η	С
0	0	2	2	1

OBJECTIVES:

To familiarize the students with

- communicating science in simple language
- capability and potential to discuss, delineate a topic precisely, professionally in an interactive manner
- science columns, science blogs, science videos, sience animations for effective public outreach

could be required.						
CO No.	At the end of the course, the learner should be able to:					
BTSEC501.1	Comprehend scientific articles and communications					
BTSEC501.2	Communicate science to public in simple ways through articles, cartoons, blogs					
BTSEC501.3	Communicate science to public in simple ways through animations, videos,					
BTSEC501.4	Relate ethics in Science communication					

COURSE OUTCOMES:

Sr no.	Practical / Workshop	Hrs
1	Modes of Professional Scientific Communication	02
2	Structure of research article	02
3	Interpreting the scientific data and writing a popular science article	04
4	Interpreting the scientific data and writing a blog	04
5	Interpreting the scientific data and making a science animation	08
6	Interpreting the scientific data and making a science video	08
7	Ethical practices in science communication	02
	Total	30

PRACTICAL EVALUATION SCHEME

Examination	Duration	Marks
Internal (Continuous) Assessm	ent	
Attendance		20
Presentations/Report/Video/B1	30	
Total		50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BTSEC501.1	1	1	-	-	-	2	-	-	1	3	-	1	1	-	-
BTSEC501.2	1	1	-	-	2	2	-	1	2	3	-	1	1	-	-
BTSEC501.3	1	1	-	-	2	2	-	1	2	3	-	1	1	-	-
BTSEC501.4	1	1	-	-	-	2	-	3	1	1	-	1	1	-	-

H C

2 1

COURSE: APTITUDE BUILDING-V			
COURSE CODE: BTAEC501	LΊ	ſ	Р
MARKS: 50 (Practical only)	0 (0	2

OBJECTIVES:

To familiarize the students with

- logical reasoning skills of the students and help them improve the problem-solving abilities
- skills required to solve quantitative aptitude problems
- verbal ability of the students for academic and professional purposes

COURSE OUTCOMES:

CO No.	At the end of the course, the learner should be able to:
BTAEC501.1	Apply critical thinking skills, such as problem solving related to their subject matter
BTAEC501.2	Demonstrate competency in verbal, quantitative and reasoning aptitude
BTAEC501.3	Display good written skills for use in academic and professional scenarios
BTAEC501.4	Develop technical skills

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course. **COURSE DESCRIPTION**

Sr no.	Practical/Training/Tests/Interviews	Hrs
1	Essential Grammar	02
2	Vocabulary for placements	04
3	Verbal Ability	08
4	Presentation & Writing skills for placements	04
5	Quality and regulatory documentation	02
6	Bioreactor design and process optimization	02
7	Enzyme-based sensors	02
8	Competitive Examination Preparation	02
9	Mock Interviews	02
10	Discussion session-Industry Experts/Academia Experts/Alumni	02
	TOTAL	30

METHODOLOGY

The course will be covered through Lectures/Assignments/Practical/Training/Tests/Interviews

PRACTICAL EVALUATION SCHEME

Examination	Duration	Marks
Continuous Internal Assessme	20	
Assignments/Practical/Trainin	30	
Total	-	50

BOOKS RECOMMENDED:

1. R. S. Aggarwal, (2017). Quantitative Aptitude for Competitive Examinations, 3rd (Ed.). New Delhi: S. Chand Publishing

2. ETHNUS, (2016). Aptimithra, 1st (Ed.). Bangalore: McGraw-Hill Education Pvt. Ltd.

3. Arun Sharma, (2016). Quantitative Aptitude, 7th (Ed.). Noida: McGraw Hill Education Pvt. Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BTAEC501.1	-	2	2	1	2	-	-	-	-	1	-	2	2	-	-
BTAEC501.2	1	1	1	-	-	-	-	-	-	1	-	1	1	-	-
BTAEC501.3	1	1	1	-	2	-	-	-	-	2	-	1	1	-	-
BTAEC501.4	1	1	1	-	1	-	-	-	-	1	-	1	1	-	-

	SEMESTER VI							
Course Code	Course Name	L	Τ	Р	Η	Cr		
BT 601	Food Biotechnology	2	0	2	4	3		
BT 602	Marine Biotechnology	2	0	0	2	2		
BT 603	Basic Pharmacology & Toxicology	2	0	0	2	2		
BI 601	Molecular Modeling & Chemoinformatics	3	0	2	5	4		
BI 601	Artificial Intelligence	1	0	2	3	2		
BT 605/606	Elective II	3	0	2	5	4		
BTIKS601	Indian Constitution and Law	1	0	0	1	1		
BTSEC601	Foreign Language Course	2	0	0	2	2		
BTAEC601	Aptitude Building-VI	0	0	2	2	1		
	Total	16	0	12	28	22		
	Elective II (Perl & Bioperl / Structural Biology)							

COURSE: FOOD BIOTECHNOLOGYCOURSE CODE: BT 601L T P Hr CMARKS: 1002 0 2 4 3

OBJECTIVE:

The objective of the course is to familiarize the students with quality process used in food industry and basic concept in Food Biotechnology

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 601.1	Comprehend the technical terms and skills involved in food science
BT 601.2	Classify and categorize various biomolecules present in food
BT 601.3	Demonstrate various processing methods in food industry
BT 601.4	Demonstrate the role of microbes in fermented food products
BT 601.5	Describe various approaches including cloning and genetic engineering for the production of genetically modified and superior quality foods
BT 601.6	Analyse and evaluate food products in terms of nutrition, adulteration, and overall quality as per the National and International standards

PREREQUISITES:

Since the course is application oriented, student must know about the basics of Biomolecules, Microbiology and Fermentation technology.

COURSE DESCRIPTION

Sr	Торіс	Detail Syllabus	No. of
No			Lectures
1	Introduction to Food Biotechnology	Activities of Food Biotechnologist, Career in Food Biotechnology.	1
2	Nutritive aspects of Food Constituents	Food and Energy, Role of Carbohydrate, Proteins, and Fats in Nutrition. Bioavailability of Nutrients, Role of Vitamins, Minerals, Fiber and Water. Stability of Nutrients	3
3	Biotechnology in Food Processing	Unit Operation in Food Processing Quality Factors in Food Food deterioration Food Preservation and its Principle Rheology of Food in general.	6

			(DEEMED UNIVERSITY)		
4	Role of Microbes in Food and Food Products	Fermentation and other uses of Microorganism, Single Cell Proteins. Production of Pickle, Kefir, Wine, Beer, Bread, Monosodium Glutamate (MSG). Production of Cheese and Types of Cheese. Use of enzymes in food industry - Proteases, Glucose oxidase, Amylase.	10		
5	Molecular cloning in Food Industry and Other technique to develop new plant varieties	Antisense RNA technology (Flavr Savr Tomatoes), Enviro Pig, Daisy Cow, Golden Rice, BT Brinjal. Agrobacterium mediated gene transformation, Somaclonal Variation, Gametoclonal Variation. Ethical Issues related to use of Genetically modified foods.	8		
6	Food Laws and Standards	Prevention of Food Adulteration Act, FSSAI and its function, International Food Standards- FAO, WHO and CODEX Alimentarius. Hazard Analysis Critical Control Point (HACCP). Food Labeling and Nutrition Labeling. Quality Control in Food.	2		
Total Number of Lectures					

METHODOLOGY

The course would be taught through lectures, demonstrations and practical.

Evaluation Scheme (Theory)

Examination	Duration	Marks
Internal	45Mins	15
Teachers assessment	-	05
End Semester Exam	1 hrs 15 mins	30
Total		50

BOOKS RECOMMENDED:

- 1. Food Science by Norman Potter, Joseph Hotchkiss, Fifth Edition, 2007
- 2. Food Microbiology by William Frazier and Dennis Westhoff, 4th Edition, 2010
- 3. Modern Food Microbiology by James M Jay, 4th Edition, 2005
- 4. Food Biotechnology, edited by Dietrich Knorr, 2007

Sr No	Experiment	References
1	Determination of quality of milk by MBRT test.	
2	To Detect the number of bacteria in milk or any given	Food Microbiology by Soman J P First
	sample by Breed Count or Direct Microscopic Count	Edition, 2008
	(DMC).	Practical in Microbiology by R C
		Dubey, D K Maheshwari, First Edition 2005
3	To check the efficiency of food preservatives.	Food Microbiology by Soman J P First
		Edition, 2008
4	Estimation of Percentage of lactic acid (Titrable	Practical in Microbiology by R C
	acidity) in given milk and milk product sample using	Dubey, D K Maheshwari, First Edition
	titration method.	2005
5	Detection of pathogenic bacteria from food sample	Food Microbiology by Soman J P First
	using selective media.	Edition, 2008
6	To Detect the number of bacteria in food sample by	Food Microbiology by Soman J P First
	Standard Plate Count (SPC) Method.	Edition, 2008
		Practical in Microbiology by R C
		Dubey, D K Maheshwari, First Edition
		2005
7	To make/bake bread using Saccharomyces cerevisiae	Practical in Microbiology by R C
	(Baker's yeast).	Dubey, D K Maheshwari, First Edition
		2005
8	To make Cheese in Laboratory	Practical in Microbiology by R C
		Dubey, D K Maheshwari, First Edition
		2005

PRACTICAL IN FOOD BIOTECHNOLOGY (2 Hrs. per Week) MARKS: 50

PRACTICAL EVALUATION SCHEME:

Examination	Marks
Internal (Continuous) Assessment	20
End semester Exam Viva & Spotting	30
Total	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 601.1	1	1	1	1	-	-	1	-	1	2	-	1	1	3	1
BT 601.2	3	1	2	1	-	3	1	2	1	2	-	3	2	3	2
BT 601.3	3	3	3	2	2	3	2	2	2	2	3	3	2	3	2
BT 601.4	3	3	3	3	2	3	2	2	2	2	3	3	2	3	2
BT 601.5	3	3	3	3	3	3	2	3	2	2	2	3	3	3	3
BT 601.6	2	1	3	1	1	3	3	3	2	2	3	3	3	3	3

COURSE: MARINE BIOTECHNOLOGY COURSE CODE: BT 602 MARKS: 50

L T P Hr C 2 0 0 2 2

OBJECTIVE:

The objective of the course is to give an overview of marine environment and its living and nonliving resources. Further the utility of the resources for overall benefit of humans and other biota is also covered.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 602.1	Outline marine ecosystems and their biodiversity to isolate and identify potential marine organisms of biotechnological importance
BT 602.2	Demonstrate various marine culture techniques to produce aquatic food, and maintenance of aquatic animal health and broodstock
BT 602.3	Practice genetic improvement of fish stocks, develop probing technologies and biosensors
BT 602.4	Devise marine models for regenerative medicine and strategies for the conservation of marine resources

PRE-REQUISITES:

Students are expected to have a basic understanding in Biology.

COURSE DESCRIPTION:

Unit	Topics	Detail Syllabus	No. of Lectures
	Marine Science Fundamentals	 Bathymetry: Ocean basins, tectonics and sediments Marine biology and ecology: Biodiversity, benthos, food chain, non-cultivable life forms 	3
	Marine Microbiology	 Methods for assessment of microbial life forms: sampling, identification, community structure analysis Role of Microbes in marine ecosystem: beneficial and harmful effects, interactions with other flora and fauna 	4

	Conservation Total	□ Marine protection acts and laws: for conservation,	2 30
	Marine	Dellution in the marine environment: Causes	2
	Marine models of regenerative medicine	3	
3	Advanced technologies and products	 Transgenic fish: development and applications Probing technologies: biochemical, molecular, bioindicators Biosensors: role in marine environment 	5
2	Marine culture	 Marine life poisoning: marine toxins Aquatic animal health management: diseases of commercial fishes, spoilage, control methods Broodstock development: Maintenance of important broodstock 	7
		 antibiotics, enzymes, alkaloids, biominerals, biocomposites, Biopolymers Aquaculture: Methods, ponds, cultivation systems, examples- Gastropod, Bivalve and Crustacean production 	
	Marine resources- Bioprospecting	 Marine Natural Products: screening using advanced high- throughput systems, isolation and identification techniques using genomics, proteomics or transcriptomics approaches Bioactive compounds and Biomaterials: 	6

METHODOLOGY:

The course will be covered through lectures and laboratory practicals. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50

BOOKS RECOMMENDED:

1. Marine Biotechnology I, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005).

- 2. Marine Biotechnology II, Le Gal, Yves, Ulber, Roland (Eds.), Springer (2005).
- 3. Handbook of Marine Biotechnology, Kim, Se-Kwon (Ed.), Springer (2015).
- 4. Micro Algae: Biotechnology & Microbiology, E. W. Becker Cambridge University Press.

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

•

5. Aqua Culture – An Introduction, Lee & Newman, Interstate Publishers Biotechnology an Introduction, Susan R. Barnum, Vikas Publishing House

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 602.1	2	3	3	2	3	3	2	1	2	2	3	2	3	2	3
BT 602.2	3	3	2	2	3	3	2	2	2	1	2	3	3	3	3
BT 602.3	2	2	3	3	2	3	3	2	2	3	2	2	3	2	3
BT 602.4	3	3	3	3	2	2	3	3	2	3	3	2	2	3	3

COURSE: BASIC PHARMACOLOGY & TOXICOLOGY LTPHrC **COURSE CODE: BT 603** MARKS: 50

20022

OBJECTIVE:

The objective of the course is to familiarize the students with basic aspects of Pharmacology and toxicology.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 603.1	Comprehend the importance of dose-effect relationship in pharmacology and toxicology
BT 603.2	Explain the pharmacokinetics of xenobiotics with special reference to metabolism
BT 603.3	Analyse various chemical interactions and their importance in toxicity testing
BT 603.4	Illustrate molecular basis of interactions of various receptors with their chemical ligands

PREREQUISITES:

Students should studied chemistry and cell biology

COURSE DESCRIPTION

Unit	Торіс	ic Detail Syllabus				
			Lectures			
1	Introduction to	1. History and scope	3			
	pharmacology and	2. Definitions and terms				
	toxicology					
	Dose-effect relationships	1. Assumptions in deriving the Dose: Response	6			
		relationship				
		2. Individual, graded and quantal Dose:				
		Response relationship				
		3 . Evaluating Dose: Response relationship:				
		Therapeutic, Lethal effective dosage.				
		4. Dose–Response Assessment: NOAEL				
2	Pharmacokinetic	1. Route and site of exposure: oral, dermal,	4			
		inhalation and injection				
		2. Absorption				
		3. Distribution				
		4. Metabolism				
		5. Excretion				
	Biotransformation of	1. Biotransformation versus metabolism	6			
	Xenobiotics	2. Phase I and Phase II enzymes and reactions				
3	Interaction of chemicals	1. Potentiation,	3			
		2. Agonism and Antagonism,				
		3. Synergistic				
	Toxicity testing	1. In vitro and in vivo tests	7			

			(DEEMED UNIVERSITY)			
		Acute, sub-chronic, chronic,				
		Mutagenicity and carcinogenicity				
		2. Special Tests				
4	Response to different	1. Receptor classification	6			
	chemicals	2. Drug receptor interaction				
		Ligand-gated ion channel,				
		G-protein coupled receptors, Kinase and				
		enzyme linked and nuclear receptors.				
	Total Number of lectures					

METHODOLOGY: The course will be covered through lectures and laboratory practical's. Students will be evaluated based on two class tests, lecture and laboratory attendance, class participation.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal		20
II Internal		
End Semester Exam	1 hour 15 minutes	30
Total		50

BOOKS RECOMMENDED:

- 1) Toxicology: The Basic Science of Poisons, Casarett and Doull's: Amdur, Mary O. PhD; Doull, John PhD, MD; Klaassen, Curtis D. PhD MC Graw Hill Publisher 7th Edition.
- A text book of toxicology Ernest Hodgson A JOHN WILEY & SONS, INC., PUBLICATION, 4th edition
- Lippincott's Illustrated Reviews: Pharmacology, 5th edition, Richard A. Harvey. Publisher- Lippincott Williams & Wilkins, a Wolters Kluwer Business.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 603.1	2	2	1	-	-	1	-	_	2	1	-	2	2	2	-
						_				_			_	_	
BT 603.2	1	1	1	-	-	2	1	-	2	2	-	2	2	2	-
BT 603.3	2	2	1	1	2	2	1	2	2	1	2	3	3	3	-
BT 603.4	2	3	3	3	-	2	2	2	2	2	2	3	3	3	2

COURSE: MOLECULAR MODELING AND CHEMOINFORMAT	ГICS	
COURSE CODE: BI 601	L T P Hr	С
MARKS: 150 (Theory 100 + Practical 50)	30 2 5	4

OBJECTIVE OF THE COURSE:

The objective of the course is to familiarize the students with molecular modeling concepts and molecular modelling softwares.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BI 602.1	Explain molecular modelling and relate the concepts of mathematics such as matrices and coordinates in computational representation and calculation of molecular properties
BI 602.2	Illustrate various molecular file formats
BI 602.3	Acquire the concepts of molecular and quantum mechanics including dynamics
BI 602.4	Discuss various energy minimization algorithms
BI 602.5	Design novel lead molecules and optimize existing drugs using structure based drug designing approaches
BI 602.6	Design novel lead molecules and optimize existing drugs using ligand based drug designing approaches

PREREQUISITES

Since course deals with molecular modeling students should have basics of Maths, Physics and Chemistry of molecules.

COURSE DESCRIPTION

Sr.	Торіс	Description	Hrs
No			
1	Introduction to Molecular	History, importance and application	01
	modeling and		
	chemoinformatics		
2	Molecular Graphics	Representation of molecules using co-ordinates,	08
	Representation	Matrices and tables	
3.	Building of molecules	Building of small molecules, Building of	02
		Biopolymers DNA & oligopeptides in different	
		secondary structure	
4	File Formats	SMILES, mol, mol2, sdf, pdb etc.	06
5	Optimization of geometries	Energy minimization by systematic search	10
	(Molecular Mechanics)	Method, Plotting conformation energy contours,	
		(Ramachandran plot), and finding out minimum	
		energy conformation, Gradient based Energy	
		minimization, Molecular Dynamics method, Monte	

Total Number of lectures						
	techniques					
8	Structure based drug design	Docking and Pharmacophore	02			
7	Ligand based drug design techniques	2D and 3D QSAR, Pharmacophore	05			
6	Optimization of geometries (Quantum Mechanics)	Schrödinger equation, Derivation, equation for Hydrogen and Helium and for a molecule	07			
		Carlo method, Genetic algorithm and simulated annealing				

METHODOLOGY:

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	1 Hour	20
II Internal		15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

PRACTICAL IN MOLECULAR MODELING AND CHEMOINFORMATICS 2 HOURS 50 MARKS

- 1. Generating Rastor and Vector Graphics file and its importance
- 2. Extraction and Visualization of Macromolecules from database (Proteins & DNA) using Pymol
- 3. Extracting Small molecular structures from Databases by similarity Searching
- 4. Generating small Molecules using Fragment Library and Drawing tools
- 5. Studying the protein databank file format
- 6. Preparation and study 2D and 3D of different small molecular file formats
- 7. Calculation of total energy of the molecules
- 8. Generation of molecular conformations: Energy Minimization
- 9. Calculation of Molecular Properties.
- 10. Studying Protein-ligand interaction through Docking

PRACTICAL EVALUATION SCHEME

Examination	Marks
Practical Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

REFERENCES:

- 1. Engel, T. & Gasteiger, J. (2018). Applied Chemoinformatics: Achievements and Future Opportunities. Wiley,.
- 2. Engel, T. & Gasteiger, J. (2018). Chemoinformatics: Basic Concepts and Methods. Wiley .
- 3. Brown, N. (2016). In Silico Medicinal Chemistry, . RSC Publishing.
- 4. Wild, D. (2013), Introducing Cheminformatics. LuLu.
- 5. Faulon, J. L. & Bender, A. (2010). Handbook of Chemoinformatics Algorithms. CRC.
- 6. Leach, A.R. & Gillet, V. J. (2003), An Introduction to Chemoinformatics. Springer.
- 7. Engel, T. & Gasteiger, J. (2003). Chemoinformatics: A Textbook. Wiley.
- 8. <u>https://www.youtube.com/watch?v=tFHBQJFic9Q</u>
- 9. <u>http://www.mrc-lmb.cam.ac.uk/rlw/text/MacPyMOL_tutorial.html</u>
- 10. Chemoffice Tutorial 2004
- 11. https://sites.ualberta.ca/~pwinter/Molecular_Docking_Tutorial.pdf
- 12. Practical Chemoinformatics, Karthikeyan Muthukumarasamy, Vyas Renu, Springer 2014

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BI 602.1	3	3	1	-	1	-	-	-	2	2	-	2	3	1	1
BI 602.2	1	2	-	-	2	1	-	-	1	1	-	2	1	1	1
BI 602.3	3	1	3	2	3	1	3	2	1	3	1	3	2	2	2
BI 602.4	3	1	3	2	3	1	3	2	1	3	1	3	2	2	2
BI 602.5	2	2	2	2	2	2	1	1	1	2	2	3	1	1	1
BI 602.6	2	2	2	2	2	2	1	1	1	2	2	3	1	1	1

COURSE: ARTIFICIAL INTELLIGENCE	
COURSE CODE: BI 601	LTPHrC
MARKS: 100	10232

COURSE OBJECTIVE:

□ This course introduces the concepts and state-of-the-art research in bioinformatics, data mining and AI especially for medical application

- □ To understand the various characteristics of Intelligent agents
- □ To learn the different search strategies in AI
- □ To learn to represent knowledge in solving AI problems
- □ To understand the different ways of designing software agents
- □ To know about the various applications of AI

COURSE OUTCOME

CO No.	At the end of the course, the learner should be able to:
BI 601.1	Identify and analyse the application areas using AI
BI 6012	Select search algorithms in AI based applications
BI 601.3	Employ probabilistic reasoning in AI based applications
BI 601.4	Create biological applications using Machine Learning and Deep learning methods

PREREQUISITES

Students should be familiar with basic concepts of programming

COURSE DESCRIPTION:

Unit	Topics	No. of	
			Lectures
1	Introduction to AI	Introduction to AI, history and scope, Application areas,	2
		Heuristic search, Algorithms	
2	Search Algorithms	Random search, Search with closed and open list, Depth	2
		and Breadth first search	
3	Probabilistic	Probability, conditional probability, Bayes Rule,	1
	Reasoning	Bayesian Networks	
4	Introduction to	Supervised & Unsupervised Learning	4
	Machine Learning		
	Introduction to	Neural networks, Computer Vision, Natural Language	3
	Deep Learning	Processing	
	Application of AI	Case Study	4
	in Biological		
	Sciences		
	Total		16

METHODOLOGY:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EXAMINATION SCHEME (THEORY)

Examination	Duration	Marks
Internal	45 mins	20
End Semester Exam	1hr and 15 mins	30
Total		50

PRACTICALS IN ARTIFICIAL INTELLIGENCE (2 HOURS PER WEEK) 50 MARKS

1) Basic foundation of Python and acquainted with IDE such Jupyter Notebook

2) Practical implementation of python libraries such as NumPy, Pandas, and Matplotlib for data manipulation and visualization

3) Basic understating Libraries such as Scikit-learn, TensorFlow and Dataset such as Kaggle.

4) Implementation of Linear Regression, K-Means, SVM, Naïve Bayes classifier and Random Forest algorithm (at least two) by using Scikit-learn libraries

Miniproject

5) To build an AI system using convolution neural networks (CNNs) and Python that can detect pneumonia from a patient's X-ray images

6) To build a chatbot using Python

7) To build a recommendation system for customers for products with the help of ANN, data mining, machine learning, and programming

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

BOOKS RECOMMENDED:

1) Géron, A. (2022). *Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow.* " O'Reilly Media, Inc."

2) Boden, M. A. (2018). Artificial intelligence: A very short introduction. Oxford University Press.

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

3) Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson

4) Poole, D. L., & Mackworth, A. K. (2010). *Artificial Intelligence: foundations of computational agents*. Cambridge University Press.

5) Russell, Stuart. "Human-Compatible Artificial Intelligence." (2022): 3-23

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BI 601.1	2	1	1	-	1	1	-	-	2	1	-	2	2	1	-
BI 6012	2	2	1	1	3	1	-	-	2	1	-	2	2	2	-
BI 601.3	2	2	2	2	3	2	-	-	2	2	-	3	2	2	1
BI 601.4	2	2	2	2	3	3	3	3	2	2	3	3	2	2	2

Elective II COURSE: PERL & BIOPERL COURSE CODE: BT 605 MARKS: 150 (Theory 100 + Practical 50) 3 0 2 5 4

LT P Hr C

OBJECTIVE

The objective of the course is to familiarize the Perl programming concepts

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BI 605.1	Illustrate the application of Perl in bioinformatics and the use of datatypes, arrays and data lists
BI 605.2	Perform repetitive tasks using control structures such as if-else, switch, loops etc.
BI 605.3	Apply Hash codes to enhance the program output and learn the syntax for basic input output operations
BI 605.4	Illustrate various regular expressions for mining and cleaning biological data
BI 605.5	Acquire the skills to write scripts and programs to generate functions using subroutines
BI 605.6	Apply various Bioperl modules to perform specific biological tasks like sequence similarity search and sequence alignment

PREREQUISITES

Students should be familiar with basic concepts of programming.

COURSE DESCRIPTION

Unit	Topics	Detailed syllabus	No. of Lectures
1	Introduction and	Introduction to Perl, Use of Perl in	03
	Installation	Bioinformatics,	
		History, Availability, Support and Basic Concepts	
	Scalar Data	Data types, variables, scalars, Number, String, String functions, Comments, Escape sequences, Operators and operator types	04
	Arrays and List Data	Introduction, Literal Representation, Variables Array Operators and Functions, Scalar and List context	04

	Tota	l Number of Lectures	42
	Perl.	Advanced features in Perl, Advanced functions, operators files and directories System Interaction, Using Perl''s command line tool, References and Structures, Perl CGI, BioPerl Modules	
6	Advanced features in	Variable length parameter list Object oriented programming in Perl, Perl DBI,	08
5	Subroutines	operators, Substitution, Split and join functions System and user function, The local Operator,	03
4	Regular Expressions	different modes of file.Use of regular expression, Patterns, Matching	05
	Basic I/O	Opening & closing file, reading & writing file,	05
3	Hashes	Hash variables, Literal Representation of hashes, Hash function	05
2	Control Structure	If-else, switch, last, next, for loop, while loop and do-while loop	05
2	G (19)		(DEEMED UNIVERSITY)

METHODOLOGY

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
First Internal	60 minutes	20
Second Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED

- 1. Bioinformatics A Practical Guide to the Analysis of Genes and Proteins by Andreas Baxevanis, Francis Ouellette, Wiley-Interscience, 2005.
- Introduction to Bioinformatics by T. K. Attawood & D.J. Parry-smith, 8th reprint, Pearson education, 2004
- Bioinformatics: Sequence and genome analysis by D. W. Mount, 2nd edition, CBS Publication, 2005.
- 4. Fundamental Concepts of Bioinformatics by D. E. Krane and M. L. Raymer, Pearson Publication, 2006.
- 5. Bioinformatics: Tools & Applications by D. Edward, J. Stajich and D. Hansen, Springer, 2009.
- 6. Bioinformatics: Databases, Tools & Algorithms by O. Bosu and S. K. Thurkral, Oxford University Press, 2007.
- Bioinformatics: Methods and Applications Genomics, Proteomics and Drug Discovery by S.C. Rastogi, N. Mendiratta, P. Rastogi, PHI Learning Pvt. Ltd., 2015.

Sr. No.	Name of the Experiment	Name of the Experiment Learning objective					
1.	Installation of Perl and BioPerl.	Learning installation process.	1. Tisdall James, Beginning Perl for Bioinformatics,				
2.	Scripting to understand the scalar data representation.	Declaration of variables and use of operators	O'Reilly Media, 2001. 2. Tisdall James				
3.	To write scripts using control structures.	Application of control structures.	Matering Perl for Bioinformatics, O' Reilly Media, 2003.				
4.	Write scripts using arrays and lists with	Use of arrays and lists.	3. Schwartz Randal Phoenix Tom and Foy Brian D.				
5.	Write scripts using hashes with biological example.	To know about data structure hash.	Learning Perl, 6 th Edition, O'Reilly.				
6.	Write scripts for Basic I/O with biological	Handling user input					
7.	Writing regular expressions for motifs and	Learning to write					
8.	Write scripts using subroutines with biological example.	Organizing script using subroutines.					
9.	Scripting to create and delete directories and	Learning directory					

PRACTICALS ON PERL & BIOPERL (2 Hrs. Per Week) 50 MARKS

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BI 605.1	3	2	1	-	-	1	-	-	1	1	-	1	1	1	1
BI 605.2	3	3	2	-	-	1	-	-	1	1	-	1	2	2	1
BI 605.3	3	3	2	1	-	-	-	-	1	1	-	1	2	2	1
BI 605.4	3	3	2	2	-	1	-	-	3	2	-	2	1	1	1
BI 605.5	3	3	3	2	-	2	-	-	2	2	2	2	3	2	3
BI 605.6	3	3	3	3	3	2	1	2	3	2	2	1	2	2	2

Elective II COURSE: STRUCTURAL BIOLOGY COURSE CODE: BT 606 MARKS: 150

LT P Hr C 3 0 2 5 4

OBJECTIVE

The objective of the course is to familiarize the student with Structural Biology. COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
	Outline the potential of bioinformatics in solving biological problems and discuss the
BI 606.1	hierarchy of secondary and tertiary structures of proteins with various structure
	prediction and validation techniques
BI 606.2	Illustrate RNA secondary structure prediction and determination using various tools
DI 000.2	and methods
BI 606.3	Discuss protein-RNA interactions and illustrate genome annotation and functional
DI 000.5	genomics
BI 606.4	Demonstrate various differential gene expression tools for functional analysis
BI 606.5	Explain protein dynamics using various computational methods and algorithms
BI 606.6	Explore the secondary structural databases and tools for explaining the functionality
BI 000.0	of the molecules

PREREQUISITES

Students should be familiar with school level mathematics and Biology to take up this course. In case they do not have mathematics at the twelfth level they should have cleared the core mathematics in the first semester.

COURSE DESCRIPTION

Unit			No. of
	Topics	Detailed syllabus	Lectures
1	Protein sequences,	Overview and scope of Bioinformatics,	02
	sequence alignment;	Computers in biology, medicine & different	
	Basic polypeptide	problems in biology.	
	stereochemistry		
	Hierarchy in protein	Secondary structure, tertiary structure; Protein	05
	folds:.	structure determination by X-ray crystallography	
	Principles of protein	protein purification, crystallization, structure	03
	purification,	determination Methods, Structure function	
	crystallization, structure	relationship.	
	determination; Structure		
	validation and best		
	practices on the use of		
	protein structures from		
	the protein data bank;		
	Protein fold-function		

	relationships; structure		
	and annotation.		
2	Tools and methods for	Protein 3D structure prediction using	02
	structure prediction	comparative modeling (Homology modeling),	
		fold-threading, ab-initio, Deep Learning	
		methods; RNA secondary structure prediction	
3	Protein Nucleic Acid	Dynamics of Protein-NA complexes;	04
	interaction and		
	functional Analysis		
4	Gene to structure	Conformation of DNA and RNA structures	03
	functional analysis		
5	Protein Dynamics	Protein functional dynamics, Protein dynamics	02
		studies by MD simulations;	
	Protein dynamics by	Basic NMR techniques	03
	NMR;		
	Protein dynamics	Computational Methods and Algorithms	03
	studies by other		
	biophysical techniques.		
6	Introduction to	Structure database and tools	03
	structural		
	Bioinformatics.		
	Total	Number of Lectures	45

METHODOLOGY

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
First Internal	60 minutes	20
Second Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 minutes	60
Total		100

REFERENCE BOOKS

1. Biophysics – An Introduction by Cotterill, Wiley Student Edition.

2. Foundations of Biophysics by A.L. Stanford, Academic Press.

3. Principles of protein structure by G Schulz and R H Schrimer, Springer Verlag.

4. Principles of nucleic acid structure by Sanger, Springer Verlag.

5. Introduction to Protein Science by Arthur M Lesk, Oxford University Press.

6. Biological Spectroscopy by J. D. Campbell and R. A.Dwek, Plenum Press.

7. A Textbook of Biochemistry and Biophysics by S.M Gopinath, Archers & Elevators International Publishing House, India. 1st Edition, 2014.

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1.	Understanding Protein structures and Visualization	Visualize and get familiarize with the protein Structure	Basic concepts
2.	Drawing helical wheel for alpha helix	Understanding the structure	Drawing Basic concepts
3.	Using Rasmol and PyMOL for 3-D visualization	Aquanted with rasmol and Pymol	https://pymol.org/
4	Analysis of protein- protein interaction and protein-DNA interaction	Study of Interactions	Interactome
5	Advanced PyMOL usage	Pymol	https://pymol.org/
6	Use of PDBsum for structural analysis	PDBSum Explore	https://prosite.expasy.org/prosite_ link.html
7	Protein-Ligand interactions: LIGPLOT	LIGPLOT expore	
8	Secondary structure prediction methods	Prediction methods	Any standard Method
10	PROSITE - Protein signature patterns	Prosite explore	https://prosite.expasy.org/prosite_ link.html
11	RNA secondary structure visualization	Any standard Tool	Any standard Tool

PRACTICAL IN STRUCTURAL BIOLOGY (2 Hrs. Per Week) MARKS: 50

BOOK RECOMMENDED:

- 1) Introduction to Protein Structure, Carl Branden and John Tooze, Garland Publishing Inc., New York 29.
- 2) Bioinformatics: sequence and Genome Analysis, DW Mount, Cold Spring Harbor Laboratory Press, 200 30. Creighton T.E. ed.
- 3) Protein structure. A practical approach. (2004) Oxford University Press

PRACTICAL EVALUATION SCHEME:

Examination	Marks
Internal (Continuous) assessment	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BI 606.1	2	2	2	1	2	-	-	-	1	2	-	1	2	2	1
BI 606.2	2	2	3	2	1	-	-	-	2	2	-	1	2	2	1
BI 606.3	3	2	3	2	2	2	1	1	2	1	2	1	2	2	2
BI 606.4	3	3	3	2	2	2	1	2	2	2	2	2	2	2	3
BI 606.5	2	3	3	3	3	1	1	1	2	2	1	2	2	2	2
BI 606.6	3	3	3	3	2	2	1	2	2	3	2	2	1	1	1

COURSE: INDIAN KNOWLEDGE SYSTEM: INDIAN CONSTITUTION AND LAWCOURSE CODE: BTIKS601L T P Hr CMARKS: 501 0 0 0 1

OBJECTIVE

The objective of the course is to provide the students an introduction of Indian Constitution, its basic constituents and overview on the legal system in this country

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTAEC501.1	Recognize the importance, sources, structure and principles of Constitution of India
BTAEC501.2	Comprehend the composition and powers of Parliament and State Legislatures
BTAEC501.3	Know the significance of local governance.
BTAEC501.4	Appreciate the structure and roles of judiciary in India

PREREQUISITES

Any student who has passed the Intermediate/ISC Class-XII/AISSE of CBSE or equivalent examinations in India or abroad.

COURSE DESCRIPTION

Unit			No. of
	Topics	Detailed syllabus	Lectures
1	Introduction to the	The Constitution of India and the Preamble.	3
	Constitution of India	Sources and features of Indian Constitution.	
		Citizenship, Fundamental Rights and Duties	
		Directive Principles of State policy.	
		Concept of Federalism, Federalism in India:	
		Relationship between Central and State	
		Governance.	
		The three pillars of Indian Governance: Parliament,	
		Executive and Judiciary.	
		Roles of Election Commission in India.	
2	Union Government	Legislature: Lok Sabha, Rajya Sabha, and their	3
	and it administration	powers and roles.	
		Executive: Appointments, powers and roles of	
		President, Vice-President, Prime Minister and	
		Council of Ministers. Introduction to civil services	
		in India.	
		Judiciary: Authorities and roles of the Supreme	
	<i>a</i>	Court and the High Court.	
3	State Government and	Legislative Assembly, Legislative Council, their	3
	it administration	control and functions.	
		Appointments, powers and roles of Governor, Chief	
		Minister and Council of Ministers of the State.	
4	Local Governance in	Evolution of Local Governance in India.	3
	India		

5	Indian Legal System Tota	Importance of Municipalities. Panchayati Raj: Composition and their functions, 73rd and 74th Amendments in the Constitution of India, importance of Zilla Parishad, Panchayat Samiti and Gram Panchayat. Jurisprudence, its evolution and types (in brief). History and significance of legal systems in India. Basics of Indian laws and their types. Enactment of laws, Law commission in India Alternate Dispute Redressal. Personal and International laws in India.	3
		Composition of District Administration, their authorities and roles.	
		-	1
		73rd and 74th Amendments in the Constitution of	
5	Indian Legal System	History and significance of legal systems in India. Basics of Indian laws and their types.	3
	Tota	al Number of Lectures	15

METHODOLOGY

The course will involve the conduct of a series of lectures to understand the various aspects of Constitution of India and an overview on the laws of the land.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hour 15 minutes	30
Total		50

BOOKS RECOMMENDED

1) Durga Das Basu, Introduction to the Constitution of India, Gurgaon; LexisNexis, 2022 (26th edn.).

2) M.V.Pylee, India's Constitution, New Delhi; S. Chand Pub., 2017 (16th edn.).

3) J.C Johari, Indian Government and Politics, Shaban Lal & Co., 2012.

4) R. Bhargava, (2009) 'Introduction: Outline of a Political Theory of the Indian Constitution', in R. Bhargava (ed.) Politics and Ethics of the Indian Constitution, New Delhi: Oxford University Press.

5) Bidyut Chakrabarty & Rajendra Kumar Pandey, Indian Government and Politics, SAGE, New Delhi, 2008.

6) G. Austin, The Indian Constitution (OIP): Cornerstone of a Nation, Oxford, Oxford University Press, 1999.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BTAEC501.1	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-
BTAEC501.2	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-
BTAEC501.3	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-
BTAEC501.4	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-

COURSE: FOREIGN LANGUAGE

COURSE CODE: BTSEC601	L	Т	Р	Hr	С
MARKS: 50	2	0	0	2	2

OBJECTIVE

To develop students' proficiency in speaking, reading and writing in foreign language. Additionally to help promote communication across linguistic barriers, enhance cultural awareness and widen the horizon for future endeavors.

DESCRIPTION

The students are given an option to choose any one from the languages - German/ French/ Japanese/ Korean/ Spanish for the offline course. Two of the most favored languages among these are considered for the offline course, while the students are free to opt for any other language through the online MOOCs, provided it fits in the semester tenure.

At the end of the semester the students need to earn a certificate on the basis of which they will be given credits out of two.

COURSE: APTITUDE BUILDING-VI COURSE CODE: BTAEC601

MARKS: 50

OBJECTIVE

- □ Help to trigger the students' logical thinking skills and apply it in the real-life scenarios
- □ Learn to deploy the strategies of solving quantitative ability problems
- $\hfill\square$ To expand the verbal ability of the students
- □ Assist to run the gamut of employability skills

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTAEC601.1	Proficiency development in interacting and using decision making models effectively
BTAEC601.2	Comprehend the given concepts expressly to deliver an impactful presentation
BTAEC601.3	Acquire a knowledge of solving quantitative aptitude and verbal ability questions
Diffectories	effortlessly
BTAEC601.4	Develop technical skills

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course.

COURSE DESCRIPTION

Sr	Practical/Training/Tests/Interviews	Contact
no.		Hours
1	Logical Reasoning puzzles - Advanced	02
2	Logical connectives, Syllogism and Venn diagrams	02
3	Permutation, Combination and Probability - Advanced	04
4	Quantitative Aptitude	06
5	Image interpretation	02
6	Critical Reasoning - Advanced	02
7	Genome, transcriptome and proteome analysis	02
8	Market Survey/Market Intelligence	02
9	Bioindicators	02
10	Competitive Examination Preparation	02
11	Mock Interviews	02
12	Discussion session-Industry Experts/Academia Experts/Alumni	02
	TOTAL	30

L	Т	Р	Hr	С
0	0	2	2	1

METHODOLOGY

The course will be covered through Lectures/Assignments/Practical/Training/Tests/Interviews

EVALUATION SCHEME (THEORY)

Examination	Marks
Internal (Continuous) Assessment	20
Assignments/Practical/Training/Tests/Interviews	30
Total	50

BOOKS RECOMMENDED:

1. R. S. Aggarwal, (2017). Quantitative Aptitude for Competitive Examinations, 3rd (Ed.). New Delhi: S. Chand Publishing

2. ETHNUS, (2016). Aptimithra, 1st (Ed.). Bangalore: McGraw-Hill Education Pvt. Ltd.

3. Arun Sharma, (2016). Quantitative Aptitude, 7th (Ed.). Noida: McGraw Hill Education Pvt. Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BTAEC601.1	-	2	2	1	2	-	-	-	-	1	1	2	2	-	-
BTAEC601.2	1	1	1	-	-	-	-	-	-	1	-	1	1	-	-
BTAEC601.3	1	1	1	-	2	-	-	-	-	2	-	1	1	-	-
BTAEC601.4	1	1	1	-	1	-	-	-	-	1	-	1	1	1	-

	SEMESTER VII								
Course Code	Course Name	L	Т	Р	Hr	Cr			
BT 701	Nanobiotechnology and Biosensors	2	0	2	4	3			
HU 701	Principles of Management & Entrepreneurial Development	2	0	0	2	2			
HU 702	Quality Control Management in Biotechnology	2	0	0	2	2			
BI 701	Design and analysis of Algorithms	1	0	2	3	2			
BT 702	Seminars in Biotechnology	2	0	0	2	2			
BT 706	Molecular Cell Signaling	2	0	0	2	2			
BT 703/704/705	Elective-III	3	0	2	5	4			
BTAEC701 (Ability Enhancement Program)	Aptitude Building-VII (includes Competitive exam preparation, placement related sessions and alumni interactions and trainings)	0	0	2	2	1			
	Total 13 0 10 23 18								
Elective III	(Metabolic Engineering/ Agriculture Biotechno	ology/	Canc	er Bio	logy)				

COURSE: NANOBIOTECHNOLOGY & BIOSENSORSCOURSE CODE: BT 701L T P Hr CMARKS: 1002 0 2 4 3

OBJECTIVES:

The objective of the course is to familiarize the students with advanced research area and basic concept in Nanobiotechnology and Biosensors

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 701.1	Comprehend the basics of nanobiotechnology, nanomaterials and nanoparticles
BT 701.2	Demonstrate the knowledge of nanobiotechnology in various fields such as medicine, drug encapsulation, drug delivery and other applications
BT 701.3	Explain the construction and designing of various types of biosensors
BT 701.4	Describe the different applications of biosensors in various fields such as health care, agriculture and environment

PREREQUISITES:

Since it is advance course, student should be familiar with basic knowledge of physics, chemistry, and biology.

COURSE DESCRIPTION:

Unit	Торіс	Detail Syllabus	No. of Lectures
1	Introduction to Nanobiotechnology	-Nanotechnology and nanobiotechnology, History, -Broad perspective, and Today's World, -Significance of Nanoscale materials.	03
	Nanomaterials and nanoparticles	 -Different classes of nanomaterials - Synthesis and characterization of nanomaterials - One, two, and three dimensional structure of nanomaterials - Bio-mimetics 	06
2	Application of Nanomaterials in medicine	 -Drug delivery -Drug encapsulation -Tissue repair and implantation -Nanocoatings - Miniaturized devices/ Lab on a chip Toxic effects of nanomaterials 	05
3	Biosensors: General Concepts	-Introduction to biosensors -History of biosensors discovery	02
	Construction and designing of biosensors	 Components of a typical biosensor Types of biosensors (Calorimetric, Potentiometric, amperometric, optical, Piezo-electric, Immuno based sensors) 	05

4	Applications of biosensors	 -Associated electronics with each category of biosensor - Applications related to healthcare, bio-defense, food and water safety, agriculture and environment 	06
4	Case studies	-Success and failure of Nanodevices and biosensors with suitable examples -Multidisciplinary interactions for biosensor development	03
	•	Total Number of Lectures	30

METHODOLOGY:

The course would be taught through lectures and practical.

EVALUATION SCHEME (THEORY):					
Examination	Duration	Marks			
Internal	45 minutes	15			
Attendance		5			
End Semester Exam	1 hour 15 minutes	30			
Total		50			

BOOKS RECOMMENDED:

- 1. Biosensors and Nanotechnology, (Editors; Zeynep Altintas) John Wiley & Sons Inc, 2017, ISBN: 9781119065159, 9781119065159
- 2. Biosensors and Bioelectronics: D. Dharaneeshwara Reddy, O.M Hussain, DVR. Sai Gopal, Muralidhara Rao, and K.S Sastry. I. K International Publishing House Pvt. Ltd, New Delhi. ISBN 978-93-82332-19-0, Year?
- 3. C. M. Niemeyer, "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley VCH, 2006
- 4. David S Goodsell, "Bionanotechnology", John Wiley & Sons, 2004
- 5. Understanding Nanomedicine: An Introductory Textbook, Rob Burgess, Publisher: Pan Stanford Publishing; ISBN-13: 978-9814316385, year?
- Introduction to Nanoscience, S.M. Lindsay, Oxford universal Press, First Edition, 2010 Nanotechnology: Understanding small system, Ben Rogers, SumitaPennathur and Jesse Adams, CRC Press, Second edition, 2011
- Nanobiotechnology: Bioinspired Devices and Material of Future by Oded Shoseyov and Ilan levy, Human Press, First edition, 2007. The Nanobiotechnology Handbook (Editor; <u>Yubing Xie</u>) CRC press.

PRACTICAL IN NANOBIOTECHNOLOGY AND BIOSENSORS: 2 hours per week Marks: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of silver nanoparticles using sodium borohydride	Method for preparing silver nanoparticles by chemical method	Preparation of colloidal silver nanoparticles by chemical reduction method. <i>Korean Journal of Chemical</i> <i>Engineering</i> . 2009, 26 (1);153–155
2	Green synthesis of silver nanoparticles using bacteria/plant/fungi	The importance of green synthesis of silver nanoparticles. Mechanism involved in synthesis of silver nanoparticles	Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. <u>Journal of Radiation</u> <u>Research and Applied</u> <u>Sciences</u> . 2016 <u>9 (1</u>):1-7
3	Characterization of nanomaterials using Scanning Electron Microscopy.	The effect of the (nano) size of matter on its properties.	Characterization of silver nanoparticles synthesized using <i>Urtica dioica</i> Linn. leaves and their synergistic effects with antibiotics <u>Journal of Radiation</u> <u>Research and Applied</u> <u>Sciences.2016,9(3):217-227</u>
4	Evaluation of antimicrobial activity of silver nanoparticles against Gram Positive and Gram negative microorganisms	The possible mechanism of antibacterial action of silver nanoparticles. The advantages of silver nanoparticles for medical uses	Characterization of silver nanoparticles synthesized using <i>Urticadioica</i> Linn. leaves and their synergistic effects with antibiotics <i>Journal of Radiation</i> <u>Research and Applied</u> <u>Sciences</u> . 2016, <u>9(3)</u> :217-27
5	Increasing bioavailability of drugs using nanostructured Beta-cyclodextrin	The importance of bioavailability of drugs during the treatment any disease. To increase the bioavailability of drug and its importance for antimicrobial study.	Transformation of Curcumin from Food Additive to ultifunctional Medicine: Nanotechnology Bridging the Gap. <i>Current</i> <i>Drug Discovery</i>

		Γ	Dr. D.Y. PATIL VIDYAPEETH, P (DEEMED UNIVERSITY)
			Technologies, 2014, 11, 197-213
6	Entrapment of silver nanoparticles in alginate beads for remediation of water.	The mechanism of gelation of alginate. Method for preparing alginate beads Applications of alginate beads loaded with AgNPs.	Preparation and Characterization of Silver Nanoparticles-Loaded Calcium Alginate Beads Embedded in Gelatin Scaffolds <u>AAPS PharmSciTech</u> . 2014; 15(5): 1105–1115.
7	Study of principle and working of glucose biosensor	The principle of working of a typical glucose biosensor. Construction of test strips using GOx. Method of using the glucose biosensor.	Glucose Biosensors: An Overview of Use in Clinical Practice (2010) <i>Sensors</i> , 10, 4558-4576; doi:10.3390/s100504558
8	Study of conductivity of DNA for use in biosensor	Important for developing DNA based amperometricsystems and biosensors	Electrical conduction through DNA molecules. 1999 Nature 398, 407-410
9	Internalization of drug conjugated nanoparticles in mammalian cells	Study mechanism of silver nanoparticles penetration through cells.	Simple and Easy Method to Evaluate Uptake Potential of Nanoparticles in Mammalian Cells Using a Flow Cytometric Light Scatter Analysis. <i>Sci.</i> <i>Technol.</i> , 2007, <i>41</i> (8), pp 3018–3024
10	Study of nano-structured materials used for tissue engineering	What nanostructures are formed in PVA and Pluronic gelation? What are the methods by which PVA and Pluronic form gels	Nanostructured materials for applications in drug delivery and tissue engineering. <i>J</i> <i>Biomater Sci Polym</i> . 2007; 18(3): 241–268.

PRACTICAL EVALUATION SCHEME					
Examination	Marks				
Internal (Continuous) assessment:	20				
End semester examination:	30				
Total:	50				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 701.1	2	1	-	-	-	-	1	3	2	1	-	3	2	-	-
BT 701.2	3	3	3	3	-	3	2	3	2	-	3	3	2	2	-
BT 701.3	3	3	3	2	3	2	3	3	3	1	2	3	2	2	2
DT 701 4	2	2	2	2	2	3	2	2	2	1	2	3	2	2	2
BT 701.4	3	3	2	3	3	3	3	2	Z	1	Z	3	Z	Z	3

COURSE: PRINCIPLES OF MANAGEMENT AND ENTREPRENEURIAL DEVELOPMENTCOURSE CODE: HU 701L T P Hr CMARKS:502 0 0 2 2

OBJECTIVES:

- □ Make students understand the work culture in an organization
- □ Preparing them to be competent in the corporate world
- □ Motivate students to critically analyse the problem and solve it
- □ Apply the knowledge of management in their future endeavour

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
HU 701.1	Comprehend basic principles of management, including planning, organizing, leading, and controlling
HU 701.2	Develop leadership, problem-solving, and decision-making skills that are valuable in various aspects of business
HU 701.3	Develop an entrepreneurial mindset, innovation, and a willingness to take calculated risks, which are crucial for aspiring entrepreneurs
HU 701.4	Demonstrate versatile abilities such as understanding financial concepts, business ethics, and social responsibility

PREREQUISITE:

This is an application based and management learning course, so students must have an understanding of the application oriented subject such as Food Biotechnology, rDNA Technology, Plant Biotechnology, Cancer Biology, Pharmaceuticals and Drugs research.

COURSE DESCRIPTION:

Unit	Торіс	Detail Syllabus	No. of Lectures
1.	Principles of Management	Introduction to Management- Management and Manager Definition, Purpose of Management, Management function, Manager Role in Management, Levels of Management	4
		 Planning - Nature of planning, Importance of Planning Planning Process, Barriers to effective planning Forecasting - Importance of Forecasting, Limitations of forecasting, Techniques of Forecasting 	5

Total Number of Lectures			
		Partnerships and Strategic Alliances	
		Diverse and Global work force	5
		Current challenges in an Organization	
		and Function of Marketing Manager.	
		Marketing - Introduction to Marketing Management, Role	
		Customers and Competitors	6
		Human Resources management - Definition, Functions and Objectives, Image and qualities of HR Manager	6
		Government Grants	
		Raising money from Venture Capitalists	
	Development	Importance of Licensing Technology/Research	
2.	Entrepreneurial	Preparation of Business plan for Biotech Start-up	4
		Controlling - Importance of controlling, Controlling Process.	
		(Trait, Behavioural, Situational)	6
		Leadership - Importance of Leaders, Leadership theories	
		Directing - Concept of Directing, Principles of Directing	
		Organising, Need for organising structure	
		Organising - Concept of Organising, Advantages of	

METHODOLOGY:

The course would be covered through lectures, supported by quizzes and case history discussion.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	45mins	15
Teachers assessment		05
End Semester Exam	1hr 15mins	30
Total	50	
BOOKS RECOMMENDED	:	

1) Principles and Practice of Management - by L M Prasad, 9th Edition, 2016

2) Principles of Management - by P C Tripathi and P N Reddy, 6th Edition, 2017.

3) A Handbook on Marketing Management - by Dr V O Varkey, 4th Edition, 2000.

4) Human Resource and Personnel Management- by K Aswathappa, 4th Edition, 2007

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HU 701.1	-	-	-	-	-	2	-	-	2	1	2	2	2	1	-
HU 701.2	-	-	-	-	-	2	-	-	3	1	1	1	1	2	_
HU 701.3	-	2	2	2	1	2	-	2	2	1	2	2	2	1	-
HU 701.4	_					2	2	3	1	1	2	2	2	2	2
110 /01.4	-	-	-	-	-	2	2	ر	1	1	2	2	2	2	2

COURSE: QUALITY CONTROL MANAGEMENT IN BIOTECHNOLOGYCOURSE CODE: HU 702L T P Hr CMARKS: 502 0 0 2 2

OBJECTIVES:

□ Make students realise the importance of Quality control in Pharma and biotech

industry

□ Prepare students competent in the field of quality control management of drugs and

biopharmaceutical

□ Create a general motivation amongst students to critically analyse the problem and

to apply the knowledge of quality management in their future endeavour.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
HU 702.1	Comprehend and apply various quality management systems of national and international importance.
HU 702.2	Manage comprehensive records and documentation to track and verify the quality of products as per the principles of various Quality Management systems including GMP, GLP and NABL
HU 702.3	Develop awareness of ethical considerations as defined by various national and international bodies to be able to comply and ensure the safety & efficacy of biotechnological products in research and industry
HU 702.4	Acquire capability to formulate and implement quality assurance systems and processes, ensuring that products meet regulatory and industry standards as per the governing body of biotechnology industry

PREREQUISITE:

This is a unique course comprising the combination of research, industry and management, so students should have understanding of all the basic concepts in biotechnology and should be well aware with the working and functioning of the biotech and pharma based industries.

COURSE DESCRIPTION:

Unit	Торіс	Detail Syllabus	No. of
			Lectures

		(DEE)	L VIDYAPEETH, PUNE MED UNIVERSITY)
1	Quality Management	Introduction, Definition of Quality, Evolution of Quality, Dimension of Quality, Factors affecting Quality, Definition of QA/QC.	2
	TQM	Definition of TQM, History of TQM, Concept, Principles of TQM, TQM Framework, Barriers in TQM implementation, Benefits of TQM, Statistical tools to measure quality, Demings Cycle/PDCA cycle, Quality Movement in India.	4
2	Pharmacopoeias	Overview of the latest Indian Pharmacopoeias.	1
	Standards Institutions	ISO 9000 Series, ISO 14000 Series, ISO 22000 Series, ISO 13485 Series, Bureau of Indian Standards (BIS).	6
	Good Manufacturing Practice (GMP) for pharmaceutical Products (API)	Pharmaceutical Manufacturing Flow Chart study, GMP Implementation at - Personnel, Building and Facility, Process Equipment, Material management, Production and in-process control, Packaging and labelling, Storage and Distribution, Laboratory control, Validation of analytical procedure, Rejection and Reuse of material, Complaints and recalls, Agents, Brokers, Distributors and Re-labellers, Documentation and Records.	8
	Good Laboratory Practices(GLP) and SOP	GLP - History, GLP implementation and organization,GLP status in India.Standard Operating Procedure - Introduction, Need andImplementation.	3
3	ICH	Introduction and ICH Process for Harmonization.	3
4	Indian Regulatory Agencies and Accreditation	Central Drug Standard Control Organization (CDSCO) for Drugs. Food Safety and Standards Authority of India (FSSAI) for Food. National Accreditation Board for Testing and Calibration Laboratories (NABL).	3
		Total Number of Lectures	30

METHODOLOGY:

The course would be covered through lectures, supported by quizzes and case history discussion.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	45mins	15
Teachers assessment		05
End Semester Exam	1hr 15mins	30
Total		50

BOOKS RECOMMENDED:

- 1. Quality control assurance by T. Anjaneyulu, First Edition(Fifth Reprint) 2017
- 2. Pharmaceutical management by Sachin Itkar, Second Edition 2007
- 3. Pharmaceutical Master Validation Plan by Syed Imtiaz Haider, First Indian Edition 2001
- 4. Biopharmaceuticals Second Edition by Gary Walsh, Second Edition -2011

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HU 702.1	1	1	-	-	1	-	1	2	2	1	1	1	2	1	-
HU 702.2	2	2	-	-	1	-	2	3	2	1	2	2	2	2	-
HU 702.3	1	1	-	-	-	2	1	3	1	1	1	2	2	2	-
HU 702.4	2	2	2	2	2	3	2	2	1	2	2	2	2	2	1

COURSE: DESIGN AND ANALYSIS OF ALGORITHMS COURSE CODE: BI 701 I MARKS: 100 2

L T P Hr C 2 0 2 4 3

OBJECTIVES:

- \Box To create general understanding of algorithms
- $\hfill\square$ To understand how to analyze statistical data and draw relevant inferences
- \Box To make students aware of machine learning using neural networks and its applications

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BI 701.1	Comprehend the fundamentals of mathematics and algorithm
BI 701.2	Explain stochastic processes and its importance in big data analysis
BI 701.3	Gain awareness on machine learning and artificial intelligence algorithms
BI 701.4	Recognize the algorithms used for image processing and analysis

PREREQUISITES:

This is an introductory course. The students should have understanding of basics of algebra and programming in any one language.

COURSE DETAILS:

Sr. No.	Topics	Detail Syllabus	No of lectures
1.	MATHEMATICS and ALGORITHMS	Fundamentals of Mathematics: Linear Algebra, Combinatorics, Boolean Functions, Number Theory, Fundamentals of Algorithms: Classification of Problems, Complexity, Asymptotic Notations. Recurrences: Master Theorem, Probabilistic Analysis: Sort, Search, Random Binary Search trees, Combinatorial Algorithms: Generating Permutations, Generating Partitions., Approximation.Concept, Design, Applications of Algorithms in biological data	5

1	1	Dr. D.Y. PAT	TIL VIDYAPEETH, PUNE EEMED UNIVERSITY)
2.	STOCHASTIC PROCESS	Probability space, Random variables, Random vectors, Conditional distributions, probability mass function, Binomial, Poisson, exponential, normal, uniform distributions, Expectation. Inequalities. Convergence of sequences of random variables. Types of convergences. Law of large numbers, Central limit theorem	7
4.	ARTIFICIAL NEURAL NETWORKS	Introduction to neural networks, Neural network architecture, Working Process of a Neuron network including Perceptron, Back propagation and forward propagation algorithms, Optimization and Control. Applications of neural networks. Deep Learning Concepts with elucidation of models such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN). Building and deploying deep learning models on widely used tools such TensorFlow and Keras. Introduction to Generative Adversarial Networks (GANs)	8
5.	DIGITAL IMAGE PROCESSING	Introduction to Image Processing Systems, Digital Image Fundamentals: - Image model, Relationship between Pixels, Sampling and quantization. Fast fourier transform, Image Enhancement in frequency domain: 1D& 2D Fourier transform, Low pass frequency domain filter, High pass frequency domain filters, Image Segmentation: - Detection of discontinuation by point detection, line detection, blurring of image, edge detection. Discrete image transform. Image Compression. Wavelet transformation	10
	Total Lectures		30

Sr. No.	Topics	Detail Syllabus	No of lectures
1.	MATHEMATICS and ALGORITHMS	Fundamentals of Mathematics: Linear Algebra, Combinatorics, Boolean Functions, Number Theory, Fundamentals of Algorithms: Classification of Problems, Complexity, Asymptotic Notations. Recurrences: Master Theorem, Probabilistic Analysis: Sort, Search, Random Binary Search trees, Combinatorial Algorithms: Generating Permutations, Generating Partitions., Approximation	5

PU

			UNIVERSITY)
		Algorithms: Concept, Design, Applications. In	
		approximability. Number - Theoretic Algorithms. Randomized	
		Algorithms, Primality Testing, Constrained and Unconstrained Optimization, Evolutionary Algorithms.	
2.	STOCHASTIC	Probability space, Random variables, Random vectors,	5
2.			5
	PROCESS	Conditional distributions, probability mass function, Binomial,	
		Poisson, exponential, normal, uniform distributions,	
		Expectation. Inequalities. Convergence of sequences of	
		random variables. Types of convergences. Law of large	
		numbers, Central limit theorem	
4.	ARTIFICIAL	Introduction to neural networks, Working of an artificial	10
	NEURAL	neuron, Perceptron, Back propagation algorithm, Optimization	
	NETWORKS	and Control, Supervised and unsupervised learning, Single	
		layer and Multilayer Perception network for pattern	
		classification; Multilayer feed forward neural networks for	
		pattern mapping. Various types of optimization methods such	
		as gradient descent, simulated annealing etc. Applications of	
		neural networks, Deep Learning Concepts, Basics of Artificial	
		Neural Network, Deep Neural Networks, Convolutional	
		Neural Network (CNN), Recurrent Neural Network (RNN),	
		Tensorflow, Keras, Introduction to Generative Adversarial	
		Networks(GAN)	
5.	DIGITAL IMAGE	Introduction to Image Processing Systems, Digital Image	10
	PROCESSING	Fundamentals:- Image model, Relationship between Pixels,	10
	TROCLOSING	Sampling and quantization. Fast fourier transform, Image	
		Enhancement in frequency domain: 1D& 2D Fourier	
		transform, Low pass frequency domain filter, High pass	
		frequency domain filters, Image Segmentation: - Detection of	
		discontinuation by point detection, line detection, blurring of	
		image, edge detection. Discrete image transform. Image	
		Compression. Wavelet transformation	
	Total Lectures		30

METHODOLOGY:

The course will be covered through lectures and supported by assignments and practicals.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester	1 hour 15 minutes	30
Total		50

BOOKS RECOMMENDED

- 1. Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein, MIT Press, Third Edition, 2009
- 2. Algorithms, by Dasgupta, Papadimitrou and Vazirani, McGraw-Hill Education, 2006
- 3. Computer Algorithms, by Horowitz, Sahni, and Rajasekaran, Silicon Press, 2007.
- 4. Algorithm Design J. Kleinberg and Eva Tardos, Pearson Education (Indian edition)
- 5. J.A. Anderson, An Introduction to Neural Networks, MIT 1995.
- 6. Laurene V. Fausett, "Fundamentals of Neural Networks : Architectures, Algorithms and Applications", Pearson India 2017.
- 7. F.O. Karray and C De Silva, "Soft Computing and Intelligent Systems Design". Pearson Education, 2004
- 8. Digital Image Processing Gonzalez & Wood, Pearson Education, 4th edition, 2018
- 9. Digital Image Processing A.K. Jain, Prentice-Hall of India Pvt.Ltd, 1990
- 10. Image Processing Dhananjay K. Techkedath, TechMax publications, 2018
- 11. R. Rajasekaran and G. A and Vijayalakshmi Pa, Neural Networks, Fuzzy Logic, and Genetic Algorithms: Synthesis and Applications, 2011. Prentice Hall of India

PRACTICAL IN DESIGN AND ANALYSIS OF ALGORITHMS (2hrs per Week) 50 marks

List of Experiments

- 1. Sorting algorithms
- 2. Random number generation
- 3. Validation of central limit theorem
- 4. Probability distributions and statistical interference
- 5. Construction of neural networks
- 6. Validation of network optimization using gradient descent
- 7. Difference in supervised and unsupervised learning and its applications
- 8. Understanding Deep Neural Networks
- 9. Use of High pass and Low pass filters for image modification

PRACTICAL EVALUATION SCHEME:

Examination	Marks			
Internal (Continuous) assessment	20			
End semester examination:	30			
Total:	50			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BI 701.1	1	1	1	-	-	1	-	-	-	1	-	1	2	1	1
BI 701.2	1	1	1	2	3	2	-	-	1	2	-	2	2	1	2
BI 701.3	2	1	1	2	3	2	1	1	1	2	2	2	2	1	2
BI 701.4	2	2	1	2	3	2	1	1	1	2	2	2	2	1	2

COURSE: SEMINARS IN BIOTECHNOLOGY COURSE CODE: BT 702 MARKS: 50

L	Т	Р	Hr	С
2	0	0	2	2

OBJECTIVES OF THE COURSE:

- To train the students for literature survey
- To understand and present a particular topic, published research work in front of an audience
- To develop capability and potential to discuss, delineate a topic precisely, professionally in an interactive manner

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 702.1	Examine specific topics that can provide insights into the most recent developments in medicine, food, agriculture and different areas of biotechnology
BT 702.2	Evaluate research information and appreciate how strategies are developed to address specific scientific questions
BT 702.3	Develop critical thinking and scientific temper
BT 702.4	Demonstrate presentation skills, communication abilities, and confidence in sharing their work with a broader audience
BT 702.5	Examine different viewpoints and approaches in biotechnology to broaden knowledge horizons
BT 702.6	Acquire knowledge in developing ideas, projects and their own research questions

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 702.1	2	1	-	-	-	-	-	2	2	1	-	2	2	1	-
BT 702.2	2	1	-	-	-	-	-	2	2	2	-	2	2	2	-
BT 702.3	2	2	1	-	-	-	-	2	2	2	-	3	2	2	-
BT 702.4	2	2	-	-	-	1	-	2	2	3	2	3	2	2	-
BT 702.5	2	2	-	-	-	-	-	-	2	1	-	2	2	2	2
BT 702.6	2	2	2	2	3	2	2	1	2	2	2	3	3	3	2

COURSE: MOLECULAR CELL SIGNALING COURSE CODE: BT 706 MARKS: 50

L T P Hr C 2 0 0 2 2

OBJECTIVES:

The objective of the course is to:

- □ Develop basic understanding of molecular cell signaling.
- □ Build translational scope for students to pursue their research and in industrial applications.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 706.1	Familiarize with scientific understanding of interplay between cell to cell and cell-ECM recognition, adhesion and their interactions
BT 706.2	Comprehend the concepts of ligand-receptor bindings and their diversity in cellular systems of organisms
BT 706.3	Explain the role of molecular signalling in various human disease conditions and developmental defects
BT 706.4	Interpret key molecular signaling pathways involved in various cellular processes

PREREQUISITES:

Since the course is an advanced level course, the student should have sufficient knowledge of cell biology, protein biochemistry, genetics and molecular biology.

COURSE DESCRIPTION:

Sr. No.	Торіс	Description	Hrs
1	Basic understanding of cell-cell and cell-ECM communications	Nature and structure of biomembrane, Extracellular signaling/transmission pathways; Endocrine transmissions, Paracrine transmissions, Autocrine transmissions, Juxtacrine transmission, Synaptic transmissions;	03
2	Call Call reasonition	Direct signaling and Indirect signaling pathways	02
2	Cell-Cell recognition	Cellular junctions such as Gap junction, tight junction, Adherene junction etc. Types of molecules involved in the cellular recognition, their functions and the mechanisms of recognition.	02
3	Cell-adhesion	CAMs, their properties and types such as CAM,	02
	molecules	Cadherins, Integrins, Heparan sulfate proteoglycans including Syndecans, Glypicans, Perlecans	
4	Concepts of receptors	Receptor ligand interactions (concepts of agonist and antagonist); Receptor characterizations; Receptor functions; Extracellular receptors	02

LABUS	FOR M. TECH. Integrated I	BIOTECHNOLOGY	PU VIDYAPEETH, PUNE IED UNVERSITY)
5	Types of receptors	Structure, functions and types of GPCR, Ion Channel receptors, catalytic receptors; Importance of these receptors in normal physiology and pathophysiological settings.	04
6	Calcium channels	Types of calcium channels, their structure, location and mechanism of transport, Consequence of low and high calcium concentrations in the cell and its effects.	02
7	Intercellular receptors	Structure, functions and types of steroid receptors and their regulations	02
8	Mechanism(s) of signal transduction	Coupling of activation receptors to intracellular signal transducing machinery; protein kinase(s) cascade, convergence of multiple signaling pathways, Phosphoinositides, Inositol1,4,5, tris phosphate, diacyl glycerol, c-AMP, c-GMP, arachidonic acid, prostaglandins and Nitric oxide	04
9	Receptor modifications and adaptation of cells	Different structural and functional modifications in the receptors; Factors behind cellular adaptations due to changes in receptors	02
10	Developmental abnormalities due to defective signaling pathways	Abnormalities during growth and development; WNT, Notch and Toll-Like Receptor signaling pathways	03
11	Signal transduction pathways as targets therapeutics	Cancer drug discovery; Metabolic diseases drug discovery; Neurodegenerative diseases drug discovery; Use of knowledge as biomarkers study in genetic disease model	04
Total 1	number of Lectures		30

METHODOLOGY:

The course would be taught through lectures and demonstrations.

EVALUATION SCHEME (THEORY):

Examination	Marks
Internal	15
Attendance	5
End Semester Exam	30
Total	50

BOOKS RECOMMENDED:

- Molecular cell biology by Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira, David Baltimore, and James Darnell. 8th Edition, 2016,New York: W. H. Freeman and Company
- 2. Molecular Biology of the cell by Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. 7th Edition. 2008. New York: Garland Science.
- 3. Cellular Signal Processing. An introduction to the molecular mechanisms of signal transduction. Second Edition. Frederich Marks, Ursula Klingmuller, and Karin Muller-Decker. 2017. Garland Science.
- 4. Molecular and Cellular Signaling by Beckerman, M. USA: Springer Science+Business Media, Inc, 2010. 592 p. ISBN 978-1-4419-1966-3.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
DT 706 1															
BT 706.1	3	2	2	1	-	-	-	-	1	2	-	1	3	2	-
BT 706.2	3	2	2	1	-	1	-	-	1	2	-	2	3	2	-
BT 706. 3	3	3	2	2	-	1	-	2	1	2	-	2	3	3	1
BT 706.4	3	3	3	3	-	2	1	2	1	2	-	2	3	3	1

Elective III COURSE: METABOLIC ENGINEERING COURSE CODE: BT 703 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVES:

- □ The course will provide an overview of the basic concepts and experimental techniques used in metabolic engineering and its applications in production of useful compounds of industrial importance.
- □ The students will also learn that how complex regulatory mechanisms at multiple levels control the dynamics of the cellular metabolism.
- □ The course will also cover examples of successful engineering strategies used for the production of commercially important primary and secondary metabolites or recombinant proteins.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 703.1	Explain the basic concepts of metabolic engineering, cellular reactions, enzyme kinetics and their regulation
BT 703.2	Discuss strain-engineering strategies to alter cellular behaviour, metabolic flux and product formation
BT 703.3	Analyse the methods for metabolic flux determination
BT 703.4	Illustrate different pathways for the production and regulation of metabolites, and techniques for strain improvement
BT 703.5	Plan the application of pathway databases in metabolic engineering
BT 703.6	Comprehend various industrial applications of metabolic engineering in the fields of medicine, energy, and environment

PREREQUISITES:

Students should be familiar with basic concepts of biochemistry, metabolism and bioinformatics.

COURSE DESCRIPTION:

Unit	Topics	Detailed syllabus	No. of Lectures
1	Introduction to	Introduction to metabolism, catabolism, anabolism.	12
	metabolic engineering	Basic concepts of metabolic engineering. Key	
	and its importance	differences between metabolic controls of prokaryotes	
		and eukaryotes. Stoichiometry of cellular reactions,	
		enzyme kinetics, reaction rates, dynamic mass	
		balance, yield coefficients and linear rate equations,	
		the black box model, elementary balance, heat balance	
		different models for cellular Reactions-Induction-	
		Jacob Monod Model and its regulation, differential	
		regulation by isoenzymes, concerted or cumulative	

		feedback regulation. Regulation in branched pathways, permeability and transport of metabolites.	UTEMED CNIVEN(11)			
2	Metabolic flux analysis.	Building stoichiometric matrix; Steady state and pseudo steady state assumptions; Using different	08			
		optimizing functions to solve linear programming problem; understanding flux cone and constraints; Introducing additional constraints from				
		thermodynamics.				
3	Experimental	C13 labeling, NMR and GC-MS based methods for	04			
	determination of metabolic fluxes.	flux determination.				
4	Computational study	Role of Bioinformatics in the study of metabolic	05			
	of metabolic	pathway such as for predicting and engineering				
	engineering.	metabolic pathways.				
5	Metabolic pathway	BioPath, BioSilico, KEGG, HUMANCyc, Model	05			
	databases and models	SEED, MouseCyc, Reactome). Metabolic pathway				
		synthesis algorithms.				
6	Industrial applications	Pathway engineering strategies for overproduction of	08			
	of metabolic	some commercially important primary and secondary				
	engineering.	metabolites (e.g. amino acids, organic acids, alcohols				
		and therapeutic compounds) or industrially relevant				
		enzymes and recombinant proteins, bioconversion-				
		applications and factors affecting bioconversion,				
		mixed or sequential bioconversions, regulation of				
		enzyme production, strain selection and improvement,				
		the modification of existing or the introduction of				
	entirely new metabolic pathways.					
	То	otal Number of Lectures	42			

METHODOLOGY:

The course will be covered through lectures and supported by practical.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 minutes	15
Attendance		05
End Semester Exam	02 hours 30 minutes	60
Total		100

BOOKS RECOMMENDED:

- 1. Metabolic Engineering: Principles and Methodologies by Gregory N. Stephanopoulus, Aristos A. Aristidou, and Jens Nielsen, Academic Press, 1998.
- 2. Pathway Analysis and Optimization in Metabolic Engineering by Néstor V. Torres and Eberhard O. Voit, Cambridge University Press, 2002.
- 3. The Metabolic Pathway Engineering Handbook: Fundamentals by Christina D. Smolke, CRC Press, 2009.
- 4. The Metabolic Pathway Engineering Handbook: Tools and Applications by Christina D. Smolke, CRC Press, 2009.
- 5. Biochemical Engineering by Harvey W. Blanch and Douglas S. Clark, Marcel Dekker, 1995.
- 6. Synthetic Biology Metabolic Engineering by Huimin Zhao, An-Ping Zeng, Springer 2018.
- 7. Metabolic Engineering for Bioactive Compounds: Strategies and Processes by Vipin Chandra Kalia, Adesh Kumar Saini, Springer 2017.
- 8. Metabolic Engineering by Sang Yup Lee and Eleftherios T. Papoutsakis, Marcel Decker 1999.

PRACTICAL IN METABOLIC ENGINEERING: 2 Hrs. Per Week MARKS: 50

- 1. Expression of metabolic enzymes in bacterial systems for metabolite engineering.
- 2. Effect of different parameters such as substrate concentration on metabolite expression.
- 3. Isolation and purification of industrially relevant metabolic enzymes.
- 4. Validation of enzyme expression and its effect on metabolic changes.
- 5. Extraction of Genes from KEGG
- 6. Screening of pathways getting affected by administration of drugs
- 7. Generate interaction map using list of genes
- 8. Exploring Cytoscape for representing a network.
- 9. Finding Hub Genes

Sr.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos				
No.	-						
1.	Develop engineering strategies to boost production of industrially relevant compound in E. coli	Production of industrially relevant compounds in E. coli.	The Metabolic Pathway Engineering Handbook: Tools and Applications by Christina D. Smolke, CRC Press, 2009.				
2.	Strain engineering (deletion or overexpression of genes) to boost production of target compound followed by metabolite extraction and quantification.	To learn the production process of target compound by strain engineering (deletion or overexpression of genes) followed by metabolite extraction and quantification.					
3.	Demonstration of feed-back regulation and product inhibition.	To demonstrate feed-back regulation and product inhibition.					
4	Development of a flux model and correlation of the model with experimental data.	To develop flux model and correlation of the model with experimental data.					
5	Metabolic pathway databases I BioSilico, BioPath, KEGG	To search and analyze metabolic pathways. Explore database on biochemical pathways. Kyoto Encyclopedia of Genes and Genomes	http://biosilico.kaist.ac.kr/ https://www.mn- am.com/databases/biopath https://www.kegg.jp/				
6	Metabolic pathway databases II MouseCyc, Reactome	Explore manually curated database of both known and predicted metabolic pathways for the laboratory mouse.	http://mousecyc.jax.org/ https://reactome.org/				

_				(DEEMED UNIVERSITY)
			Free, open-source, curated and peer-reviewed pathway database.	
	7	Metabolic pathway databases III and metabolic	Explore on human metabolic pathways.	https://humancyc.org/
		pathway models. HUMANCyc,	Optimization and analysis of genome-scale metabolic pathway models.	https://modelseed.org/
		Model SEED,		

PRACTICAL EVALUATION SCHEME

Examination	Marks
Continuous assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 703.1	3	2	3	-	-	-	-	-	2	3	-	2	1	1	1
BT 703.2	1	2	3	3	3	2	2	2	2	1	-	3	1	1	1
BT 703.3	2	2	3	3	3	2	2	2	2	2	-	3	1	1	1
BT 703.4	1	2	3	3	3	2	2	3	3	2	2	3	1	3	2
BT 703.5	3	3	3	3	3	2	1	1	2	2	1	2	3	3	3
BT 703.6	2	2	2	2	2	1	2	2	2	2	1	2	3	3	3

Elective III COURSE: AGRICULTURE BIOTECHNOLOGY COURSE CODE: BT 704 MARKS: 150 (Theory 100 + Practical 50)

L T P Hr C 3 0 2 5 4

OBJECTIVES:

- $\hfill\square$ To familiarize the students with basic concepts of Agriculture Biotechnology
- □ To clarify major scientific, ecological and sociological aspects of biotechnology in agriculture and food production.
- □ To familiarize advanced molecular biology applications in Agriculture Biotechnology

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 704.1	Comprehend aspects of biotechnology in agriculture and its application in <i>in vitro</i> plant production
BT 704.2	Apply different techniques for crop improvement using genetic engineering
BT 704.3	Apply recent techniques for plant genotyping
BT 704.4	Discuss various methods for production of secondary metabolites, pharmaceutically and commercially important proteins, edible vaccines and therapeutics
BT 704.5	Devise strategies for manufacturing of biofertilizers, biopesticides and other plant products
BT 704.6	Explain the significance of biotechnology in hydroponics and animal farming; ethical considerations in the development of genetically and its application to develop genetically modified products

PREREQUISITES:

The course is an application science, hence the student must have a background with knowledge in the basics of Plant Physiology, Plant Tissue culture and Molecular Biology.

Unit	Topics	Particulars	No. of
			Lectures
1	Introduction	Introduction: Agriculture and Agricultural	2
		Biotechnology	
	Aspects of Plant	In vitro Germplasm Conservation	2
	production	Micro propagation	2
		In vitro production of pathogen and/or disease-free	2
		plants	
2	Techniques for Crop	Biotechnology- Methods of Crop Improvement	3
	Improvement	Genetic Engineering for Crop Plants Improvement.	3
		Methods of gene transfer in plants, Transgenic Plants	
		for biotic and abiotic stress resistance, In vitro induced	
		mutagenesis	
			5

		for crop improvement, Terminator gene technology	
3	Techniques for Plant Genotyping	Recent advances – Non gel based techniques for plant genotyping – Homogenous assays – Qualitative/Real	3
		Time assays; DNA Chip and its technology. Molecular breeding (MAS)	3
		Transgenic Plants, Molecular Markers, QTL Mapping	3
4	Methods for production of plant metabolities	<i>In vitro</i> Production of Secondary Metabolites Production of foreign compounds in transgenic plants Molecular Pharming, Production of Edible vaccines and other therapeutics, Biotransformation	5
5	Strategies for manufacturing plant products	Biofertilizers and Phyto-remediation Biopesticides, Agricultural antibiotics	5
6	Modern techniques and it ethical aspects	Biotechnology in Agriculture, Hydroponics, Biosafety regulations, Ethical Aspects and Public Acceptance (Case studies)	3
		Animal farming, Animal farming with organic concept, Animal Breeding & Genetically modified animal products.	5
	ſ	Total Number of Lectures	45

METHODOLOGY:

The entire course is covered through lectures, group discussions and with the help of ICT enabled teaching aids including PPTs, visits, E-learning resources etc.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 minutes	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

BOOKS RECOMMENDED:

- 1. Singh, B.D. and Shekhawat N.S. (2017). Molecular Plant Breeding. "Scientific Publishers."
- 2. Kumar, H. D. (2005). Agricultural Biotechnology "Daya Publishing House."
- 3. Wang, K. (2010). Agrobacterium Protocols, Volume 1. "Humana Press."
- 4. Gelvin, S. B. (2018). Agrobacterium Biology- From Basic Science to Biotechnology. "Springer International Publishing."
- 5. Altman, A. and Hasegawa, P. M. (2012). Plant Biotechnology and Agriculture-Prospects for the 21st Century. "Elsevier Science"
- 6. Singh, B. D. (2010). Biotechnology. "Kalyani Publishers."
- 7. Noureddine Benkeblia. (2014). Omics Technologies and Crop Improvement. "CRC Press."
- 8. Jebaraj G.S. and Pandiyarajan P. (2012). Agricultural Biotechnology. "Agro-Bios 2008, Reprint 2012."
- 9. Muhammad Abubakar, M., Saeed, A. and Kul,O. (2015). The Role of Biotechnology in Improvement of Livestock: Animal Health and Biotechnology. "Springer."

PRACTICAL IN AGRICULTURE BIOTECHNOLOGY: 2 hrs. per week Marks:50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Use of bioreactors in plant secondary metabolite production	Mechanism and Principle involved in preparation of secondary metabolites using bioreactors	Secondary Metabolism of Hairy Root Cultures in Bioreactors In Vitro Cellular & Developmental Biology. Plant <u>Vol. 38, No. 1 (Jan</u> Feb., 2002), pp. 1-10 (10 pages)
2	Application of Polymerase Chain reaction – Marker based selection by using PCR		Polymerase Chain Reaction Technology as Analytical Tool in Agricultural Biotechnology Journal of AOAC International vol. 88, no. 1, 2005
3	Agro-bacterium-mediated transformation protocol and selection of transformed regenerated plants (Laboratory visit)		Agrobacterium- Mediated Plant Transformation: Biology and Applications bioone.org/journals/the-arabidopsis- book/volume-2017/issue-15
4	DNA finger printing methods, RAPD, SSR.	Different molecular biology based methods and their importance in recent advancements in Agricultural sciences	DNA finger printing in plants www.nbpgr.ernet.in Divisions_and_Unit Downloadfile.aspx? EntryId=7432
5	Micropropagation, Visit to micro-propagation and Molecular Biology laboratory - a laboratory with automated Genotyping/sequencing facility.	propagation in plants and understanding the use of genetic	USDA Forest Service Gen. Tech. Rep.
6	Green house technology: Visit to functional green house. Climate: Measurement of temperature, humidity, air velocity, CO2, inside the green house. Calculation of environment indices inside green house. Fertigation, Post-harvest.		Advances in greenhouse automation and controlled environment agriculture International Journal of Agricultural and Biological Engineering 11(1) January 2018.

PRACTICAL EVALUATION SCHEME:

Examination	Marks
Internal (Continuous) Assessment:	20
End semester Examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 704.1	3	2	3	3	-	-	3	3	3	2	-	3	1	1	1
BT 704.2	3	3	3	3	3	3	3	3	3	2	3	3	1	1	1
BT 704.3	2	2	3	2	3	2	3	3	3	2	2	3	1	1	1
BT 704.4	3	2	3	-	-	-	3	3	3	2	-	3	1	3	2
BT 704.5	2	3	3	3	3	3	3	3	3	2	3	3	3	3	3
BT 704.6	3	3	3	3	3	3	3	3	3	2	3	2	3	3	3

COURSE: CANCER BIOLOGY COURSE CODE: BT-705 MARKS: 150 (Theory 100 + Practical 50)

L T PHrC 3 0 2 5 4

OBJECTIVES:

- $\hfill\square$ The objective of the course is to develop understanding of the biology of cancer
- □ The course will elaborate understanding of tumor hallmarks, carcinogens, diagnostic and therapeutic options to cancer patients

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 705.1	Outline the basic principles of cancer biology, origin and development of cancer
BT 705.2	Explain the causes of cancer and its classification based on stages and grades
BT 705.3	Analyse molecular drivers like proto-oncogenes, oncogenes and tumor suppressor genes for their roles in cancer development
BT 705.4	Evaluate the molecular and cellular mechanisms underlying cancer progression and metastasis
BT 705.5	Examine different cancer biomarkers and their diagnostic roles
BT 705.6	Discuss different treatment modalities including chemotherapy, immunotherapy and targeted therapies

PREREQUISITES:

Since the course is advance in nature, basic knowledge in biochemistry, cell biology, genetics, and molecular biology is essential.

			No. of
Unit	Торіс	Detail Syllabus	Lectures
1.	Introduction to	Cancer statistics and problems at National and International	5
	cancer	perspectives. Origin of cancer cell, Genetic, molecular and	
		epigenetic changes in cancer cells, Tumor hallmarks, Tumor	
		microenvironment.	
2	Cancer progression	Basis of tumour progression, Steps in tumor progression,	6
		Cancer stem cell theory for origin of cancer, Classifications,	
		stages and grades of tumors.	
	Causes of cancer	Chemical carcinogenesis	6
		Endogenous & exogenous mutagens, Identification of	
		carcinogens, Tumour initiators & tumour promoters	
3	Molecular basis of	Aberrant signaling in cancer, Cellular and viral oncogenes	
	cancer	(Gain of Function), Deregulated apoptotic genes (Loss of	5

D PU
Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)

		Dr. D.Y. PAT	IL VIDYAPEETH, PUNE EMED UNIVERSITY)
		functions), Genomic landscape of cancers, DNA repair	
		response in cancer, Dysregulation of cell cycle and cell	
		growth, mutation in apoptosis genes, The role of viral genes	
		in cancer progression (DNA tumour virus (SV 40) and human	
		papilloma virus (E6 and E7).	
3	Proto-Oncogenes and	Introduction to Oncogenes families	
	Oncogenes	Cell transforming ability of oncogene	
	o no o gone o	Retrovirus as a source of cancer	
		Oncogenes: Ras, Myc, Src, Jun and Fos,	
		Controlling factors of oncogene expressions	
			5
	Tumour suppressor	Molecular basis of tumor suppressor genes including	č
	genes	Retinoblastoma (Rb), p53, Adenomatous polyposis coli	
	Series	(APC) in the development and progression of tumor.	4
		(A C) in the development and progression of tumor.	T
4.	Metastasis	Molecular basis of metastasis, steps in cell invasion,	
		intravasation,	4
		transport, colonization, angiogenesis.	
5.	Cancer biomarkers	Expanded diagnostic technique, Tumour markers, Nucleic	
	and diagnostic options	acid	
		based markers and mitochondrial DNA mutation markers,	
		Epigenetic markers including DNA methylation pattern and	
		chromatin remodeling, mitochondrial DNA	
		entomatin remotening, intoenondriar DTTT	4
6			4
6.	Cancer therapy	Contemporary chemotherapy, radiotherapy	6
		Emerging therapies (Targeted delivery & Synthetic lethal	
		approaches)	
		Inhibitors of oncogenic protein, tumour blood vessels	
		as target for cancer therapy	
		Tumor immunology and cancer immunotherapies	

METHODOLOGY

The entire course is covered through lectures, group discussions and with the help of ICT enabled teaching aids including PPTs, Image, Videos, E-learning resources etc.

EXAMINATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	45 minutes	15
II Internal	45 minutes	15
Teachers assessment		10
End Semester Exam	2 hours 30 minutes	60
Total		100

RECOMMENDED BOOKS

- 1. The Biology of Cancer, 2nd Edition; Author(s): Robert A. Weinberg; Garland Science; 2nd edition (14 May 2013). ISBN: 9780815342205.
- 2. Molecular biology of the cell, Garland Science; 5th edition (November 16, 2007), By Bruce Alberts (Author), Alexander Johnson (Author), Julian Lewis (Author), Martin Raff (Author), Keith Roberts. ISBN-10: 0815341059, ISBN-13: 978-0815341055.

SYLLABUS FOR M. TECH. Integrated BIOTECHNOLOGY

3. Cancer Biology, 4 edition (10 May 2007) By Raymond W. Ruddon, Oxford University press, ISBN-10: 0195096908.

PRACTICAL IN CANCER BIOLOGY: 2 hrs. per week Marks:50

Sr.	Name of the	Learning objective	Literature/ Weblinks for
No.	experiment		reference and videos
1	To perform MTT assay for the assessment and understanding of anti- proliferative and cytotoxicity effects using suitable drugs.	To observe and learn concepts of cancer growth, proliferation, toxicity	Dai Y, Grant S. 2011. Methods to study cancer therapeutic drugs that target cell cycle checkpoints. Methods Mol Biol. 2011;782:257- 304. doi: 10.1007/978-1-61779-273- 1_19.
2	To study the effects serum starvation in cancer growth and its secreted microenvironment.	To observe and learn about the growth of growth factors and importance of intra- cellular and inter- cellular microenvironment	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.
3	To observe Migration (One of hallmarks of cancer) using Boyden chamber assay.	To understand and learn about migration and invasion as hallmarks of cancer	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.
4	To perform clonogenic assay to understand clonal concept and growth characteristics of cancer cells.	To understand the concept of clonal theory of cancer growth and proliferation	 Weinberg, R.A. The Biology of Cancer. Second Edition. 2013. Garland Science. Dai Y, Grant S. 2011. Methods to study cancer therapeutic drugs that target cell cycle checkpoints. Methods Mol Biol. 2011;782:257- 304. doi: 10.1007/978-1-61779-273- 1 19.
5	To study angiogenesis using chick embryo model.	To understand angiogenesis using chick embryo model	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.
6	To perform wound healing assay.	To develop concept on tissue repair and wound healing	Dai Y, Grant S. 2011. Methods to study cancer therapeutic drugs that target cell cycle checkpoints. Methods Mol Biol. 2011;782:257- 304. doi: 10.1007/978-1-61779-273- 1_19.
7	To study spheroid culture as a preferred model for cancer stem cell study	To understand the concept of cancer stem cell	Pecorino L. Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics. Third Edition. 2012. Oxford University Press.

PRACTICAL EVALUATION SCHEME:

Examination	Marks
Internal (Continuous) Assessment:	20
End semester Examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 705.1	1	3	2	-	-	-	-	-	1	1	-	3	1	1	1
BT 705.2	1	3	2	2	-	1	-	-	1	2	1	2	1	1	1
BT 705.3	1	2	2	3	2	1	2	1	1	1	2	2	1	1	1
BT 705.4	1	2	2	2	3	1	1	1	1	1	2	3	1	3	2
BT 705.5	1	3	3	3	3	1	1	1	1	2	2	3	3	3	3
BT 705.6	1	2	3	3	3	3	1	2	1	1	2	3	3	3	3

LT P Hr C 0 0 2 2 1

COURSE: APTITUDE BUILDING-VII COURSE CODE: BTAEC701

MARKS: 50

OBJECTIVE

- □ Brush up of all the concepts of Aptitude & Life Skills
- I Give students the confidence for their placements & future career opportunities

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BTAEC601.1	Acquire a knowledge of solving quantitative aptitude, reasoning and verbal ability questions effortlessly.
BTAEC601.2	Develop demonstrable hard skills
BTAEC601.3	Perceive noticeable soft skills
BTAEC601.4	Develop technical skills

PREREQUISITE:

Students should be familiar with basic scientific concepts to take up this course.

COURSE DESCRIPTION

Sr no.	Practical/Training/Tests/Interviews	Contact
		Hours
1	Industry specific-Aptitude and Life Skills	18
2	Biosensors	02
3	Practice Tests	04
4	Competitive Examination Preparation	02
5	Mock Interviews	02
6	Discussion session-Industry Experts/Academia Experts/Alumni	02
	Total Number of Lectures	30

METHODOLOGY

The course will be covered through Lectures/Assignments/Practical/Training/Tests/Interviews

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
Continuous Internal Assessment		20
Attendance		
Assignments/Practical/Training/Test	30	
Total		50

BOOKS RECOMMENDED:

1. R. S. Aggarwal, (2017). Quantitative Aptitude for Competitive Examinations, 3rd (Ed.). New Delhi: S. Chand Publishing

2. ETHNUS, (2016). Aptimithra, 1st (Ed.). Bangalore: McGraw-Hill Education Pvt. Ltd.

3. Arun Sharma, (2016). Quantitative Aptitude, 7th (Ed.). Noida: McGraw Hill Education Pvt. Ltd.

	PO	PO1	PO1	PO1	PSO	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
BTAEC601.1	-	3	3	2	3	1	-	1	-	2	2	3	3	-	-
BTAEC601.2	2	2	2	-	-	1	-	1	-	2	-	2	2	-	1
BTAEC601.3	2	2	2	-	3	1	-	1	-	3	-	2	2	-	-
BTAEC601.4	2	2	2	-	2	1	-	1	-	2	-	2	2	2	-

Semester VIII								
Course Code	Course Name	L	Т	Р	Hr	Cr		
BI 801	Simulation and Modeling	2	0	2	4	3		
BT 801	Omics Technology	3	0	4	7	5		
BT 802	Biomedical Engineering	2	1	0	3	3		
BT 803	Stem Cell Technology	3	0	0	3	3		
BT 804/ 805	Elective – IV	3	0	2	5	4		
Total 13 1 8 22 18								
Elective IV (Tissue Engineering/ Molecular Diagnostics)								

COURSE: SIMULATION AND MODELING

COURSE CODE: BI 801 MARKS: 100

L T P Hr C 2 0 2 4 3

COURSE OBJECTIVE:

- \Box The objective of the course is to introduce the students to modeling and simulation.
- □ Familiarize the students with the application of numerical methods to various physical process.
- □ Acquaint the students with verification and validation techniques of simulation models.
- □ Develop simulation models using heuristic methods.
- □ Equip the students with the knowledge of applying mathematical modeling to Biological systems.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BI 801.1	Comprehend the importance of modelling and simulation and its application in biotechnology
BI 801.2	Explain the basic modelling equations for different physical processes
BI 801.3	Describe modelling approaches for various biological systems including biological waste water
DI 001.5	treatment
BI 801.4	State various numerical methods for modeling and simulation

PREREQUISITES:

Since the subject is an advanced course, student should have good knowledge of Biotechnology concepts and basic mathematics.

Unit	Topics	Detailed syllabus	No. of Lectures
1	Introduction to Modeling:	Introduction, definition of Modelling and simulation, different types of models, application of mathematical modelling, scope of coverage	03
	Fundamental laws:	Continuity equation, energy equation, equation of motion, transport equation, equation of state, Phase and chemical equilibrium, chemical kinetics	04
2	Examples of Mathematical Models:	Models based on Mass, component, energy and force balance: Batch reactors, PFR's, CSTR's, Reactors in series, Concept of Heated tanks	06
	Classification of mathematical modeling:	Classification based on state of the processes, type of the processes, Comparison between rigid and stochastic processes	03

			(DEEMED UNIVERSITY)		
3	Modelling	Simulation approach to Batch Reactors, Fed batch	05		
	approaches for	systems, Chemostats, Chemostats with recycle			
	Biological systems:				
	Models of Biological waste water treatment:	Modelling for activated sludge process, Model for anaerobic digestion, Model for lactic acid fermentation, antibiotic production	04		
4	Numerical Methods:	Solution of equations by Bisection method, Newton Raphson, Eulers method, Numerical integration: Trapezoidal rule, Simpsons1/3rule, Simpsons 3/8 rule	05		
	Total No. of Lectures				

METHODOLOGY:

The course would be taught through lectures, demonstrations and practicals.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
Internal	45 minutes	15
Attendance		5
End Semester Exam	1 hours 15 minutes	30
Total		50
BOOKS RECOMMENDED:		

- **Text Books:**
 - 1. Luyben W.L. " Process Modelling Simulation and Control for Chemical Engineers", McGraw Hill, 1988.
 - 2. Davis M.E., " Numerical Methods and modelling for Chemical Engineers", Wiley, New York, 1984.
 - 3. Bailey, J. and Ollis, D., "Biochemical engineering Fundamentals", McGraw Hill Kogakusha Ltd. Tokyo 2007.
 - 4. Balu, K. and Padmanabhan, K., "Modeling and analysis of Chemical Engineering processes", IK International private limited, 2007

Reference Books:

- 1. Zeigler B.P. Praehofer. H. and Kim I.G. "Theory of modeling and simulation", 2 nd Edition. Academic press 2000
- Ogata K " Modern control Engineering" 3 rd edition. Prentice hall of India 2001 3 Jang J.S.R. sun C.T and Mizutani E,, "Neuro-Fuzzy and soft Computing ", 3 rd edition, Prentice hall of India 2002
- 3. Shannon, R. E., "System Simulation: the Art and Science", Prentice Hall Inc. 1990 5 Pratab.R " Getting started with MATLAB" Oxford university Press 2009
- 4. Holland C. D., "Fundamentals and Modeling of Separation Processes", Prentice Hall., 1975
- Dunn, I. J., et al., "Biological engineering Principles, Applications and Simulation", VCH, Weinheim 2. Bioprocess Engineering Principles, Pauline M. Doran, Publisher: Elsevier Science & Technology Books, 2nd edition.

PRACTICAL IN MODELING AND SIMULATION:

2 Hrs per week 50 Marks

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos				
1.	Evaluation of Matrix multiplication and inverse functions using Microsoft Excel Solver	Developing Matrix solving capability using Excel worksheets	https://www.youtube.com/watch?v =5bNooxRm960 https://engineerexcel.com/matrix- multiplication-in-excel/				
2.	Solving Newton Raphson method using Microsoft Excel Solver	Numerical simulation using Excel sheets	https://www.youtube.com/watch?v =VuAqKL2hYeE https://www.instructables.com/id/S preadsheet-Calculus-Newtons- method/				
3.	Finding the root of Newton Raphson's Method using Microsoft Excel Solver	Numerical simulation using Excel sheets	https://www.youtube.com/watch?v =bxmUuH_gsYM http://www.real- statistics.com/matrices-and- iterative-procedures/newtons- method/				
4	Implementing Euler's method in Excel	Numerical simulation using Excel sheets	https://www.youtube.com/watch?v =B6HhL90BevQ http://www.mathcs.richmond.edu/~ caudill/localhome_links/m232/Exce l/Euler_Lab1.pdf				
5	Introduction to MATLAB operations	Introduction to MATLAB	https://www.math.utah.edu/~wright /misc/matlab/matlabintro.html				
6	Evaluation of simple mathematical expressions using MATLAB	Simulation using MATLAB	https://www.youtube.com/watch?v =VkDEHz8_8cs http://www.hkn.umn.edu/resources/ files/matlab/MatlabCommands.pdf				

PRACTICAL EVALUATION SCHEME:

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BI 801.1	2	1	-	-	-	-	-	-	1	2	-	1	2	1	-
BI 801.2	2	2	2	-	-	-	-	-	1	2	-	2	2	2	-
BI 801.3	2	2	3	2	-	2	-	-	1	2	-	3	2	2	2
BI 801.4	2	2	2	-	2	-	-	-	1	2	-	2	1	2	2

COURSE: OMICS TECHNOLOGY COURSE CODE: BT 801 Total marks: 200

L T P Hr C 3 0 4 7 5

OBJECTIVES:

- $\hfill\square$ To familiarize the student with the concepts of different omics technologies.
- □ To provide knowledge about the different approaches and tools which can be applied for omics data acquisition and analysis.
- □ To learn about different microarray and sequencing platforms and also the techniques involved in identification of proteins and metabolites.
- \Box To learn about potential early biomarkers using non-invasive techniques.
- Description To learn the difference between the metabolomic profile of healthy vs diseased conditions.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 801.1	Outline the genome organization and various tools used for genome analysis
BT 801.2	Demonstrate the concept of transcriptome and the tools involved in its analysis
BT 801.3	Employ microarray and various sequencing techniques including NGS for genomic and transcriptomic studies
BT 801.4	Illustrate the concept and tools for analysing proteome of organisms
BT 801.5	Elucidate the principles and usage of tools for studies in metabolomics
BT 801.6	Planning and implementation of advanced techniques including mass spectrometry, GCMS etc. for protein and metabolite identification

PREREQUISITE:

Basic knowledge of molecular biology, Recombinant DNA technology and Bioinformatics is required.

Unit	Topics	Detailed syllabus	No. of Lectures
1	Genomics Genome organization and Databases	Structure and organization of prokaryotic and eukaryotic genomes- nuclear, mitochondrial and chloroplast genomes. Different types of DNA databases, Tools for finding genes and regulatory regions.	04
2	Transcriptomics Concepts of transcriptomics and its scope	What is Transcriptome? Micro (mi) RNA biogenesis and its role in regulation of gene expression.	05

			D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)
		Tools for analyzing gene expression: Serial Analysis of gene expression (SAGE), massively parallel signature sequencing (MPSS).	
3	Microarray technique in Genomics and Transcriptomics Microarray its types and microarray databases	 Basic principles and design of cDNA and oligonucleotide arrays, DNA microarray. Basic steps involved in designing a microarray experiment. Types of microarray based on its applications:-Expression arrays, Comparative Genomic Hybridization (CGH) arrays, Re-sequencing arrays. Different microarray platforms (Affymetrix, Agilent etc.); Tools used to normalize microarray Data. Microarray databases – NCBI; GEO (Gene Expression Omnibus), Array Express (EBI); Functional Analysis: Gene Ontology functional enrichment tools, Pathway analysis (KEGG Database). 	05
	Sequencing technologyinGenomicsandtranscriptomicsNext Generation sequencing (NGS) and Types of NGS		05
4	Proteomics Concept of proteomics Post translational Modifications (PTMs) Bioinformatics tools in Proteomics	What is proteomics? proteome complexity; Overview of protein structure-primary, secondary, tertiary and quaternary structure. Different type of PTMs, Quantitative proteomics, clinical proteomics and disease biomarkers, mass spectral tissue imaging and profiling; Protein database, Relationship between protein structure and function.	05
5	Metabolomics	An overview, basic sample preparation strategies- extraction, derivatization. Workflow for lipidomics; Targeted Vs Untargeted metabolomics;	04

	Concept of metabolomics and analysis of metabolomics data	development of targeted assays for small molecules, NMR metabolomics, Multivariate Data Analysis (MVDA), Metabolomic Data Analysis:Peak detection, retention time alignment; identification of molecular features and metabolites; Structural confirmation of metabolites. Software- Multiquant, MZmine, XCMS, MarkerView, SIMCA by Umetrics (MVDA software), Chenomx (metabolite identification software).	UNIMPLY IN THE PLANE OF THE PLA
6	Techniques in Protein and Metabolite Identification 2D PAGE and Mass spectrometry	Identification and analysis of proteins by 2D PAGE, Mass spectrometry: ion source (MALDI, spray sources), analyzer (ToF, quadrupole, quadrupole ion trap) and detector for protein and metabolite analysis.	02
		Total Lectures	30

Methodology:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

PRACTICAL IN OMICS TECHNOLOGY (4 HRS) 100 MARKS

Sr. No.	Name of the experiment	Learning objective					
1.	To carry out quantitative real time PCR (qRT-PCR)	To learn quantification of DNA					
2.	To Perform DNA sequencing	To know the DNA/RNA sequence for finding gene of interest					
3.	To Isolate and analyse microRNA using polyacrylamide gel or PCR	To learn gene regulation using small RNA					

	1	Dr. D.Y. PATIL (DEEM
4	To predict possible microRNAs targeting the gene of interest.	Learn to locate target microRNAs by genome wide scanning
5	Study of transcriptome analysis tools Transcriptome analysis using Hisat2 and StringTie	To learn how to analyze transcriptome data
6	Gel extraction of protein spots for identification by Mass spectrometry	Protein spot identification
7	2D gel electrophoresis	To resolve proteins from mixture of proteins
8	Bioinformatic analysis of STRING, DIP & Bio GRID for protein protein interaction	To understand interacting proteins in a pathway or carrying out similar function
9	Preparation of the Sample for Metabolomics study and data acquisition	To know how to Prepare the Sample for Metabolomics study and acquire the Data points.
10	Analyze the acquired and interpretation of metabolomics data for metabolite identification and Targeted Pathway/s	To learn how to analyse the acquired Data (PCA Score plots, PLS, PLS-DA etc) and how to Interpret the Data for metabolite Identification and targeted Pathway/s

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment	40
End semester examination:	60
Total:	100

		0				0	1								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 604.1	1	3	3	3	3	2	1	-	1	2	-	3	2	2	-
BT 604.2	1	3	3	3	3	2	1	-	1	2	-	3	2	2	-
BT 604.3	1	3	3	3	3	2	1	1	2	2	2	3	2	2	-
BT 604.4	1	3	3	3	3	2	1	-	1	2	-	3	2	2	-
BT 604.5	1	3	3	3	3	2	1	-	1	2	2	3	2	2	-
BT 604.6	1	3	3	3	3	2	1	1	2	2	2	3	2	2	3

COURSE: BIOMEDICAL ENGINEERING COURSE CODE: BT- 802 Marks: 100

L T P Hr C 2 1 0 3 3

OBJECTIVES:

- The Objective of this course is to enable students to integrate the knowledge core of traditional engineering disciplines and modern biology to solve problems encountered in living systems.
- □ It will help students to understand physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health.
- □ It advances fundamental concepts; creates knowledge from the molecular to the organ systems levels; and develops innovative biologics, materials, processes, implants, devices, and informatics approaches for the prevention, diagnosis, and treatment of disease, for patient rehabilitation, and for improving health.

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:					
BT 802.1	Enlist the biomedical instruments used in healthcare					
BT 802.2	BT 802.2 Describe various equipment's used in diagnosis of human diseases and disorders					
BT 802.3	Discuss different sources of biomaterials to design medical implants, artificial organs and					
DI 002.5	tissue remodelling					
BT 802.4	Apply the principles of controlled drug delivery to compare the efficacy of drug delivery					
DI 002.4	systems					
BT 802.5	Identify various biomarkers and their role in development of medical biosensors					
BT 802.6	Express ethical considerations in personalised medicine					

PREREQUISITES:

Understanding of animal physiology, physics, engineering and biochemistry is a prerequisite.

Sr. No.	Topics	Detail syllabus	No. of Lectures
1	Introduction	-History of Biomedical engineering	02
		-Integration of biology, biochemistry, and	
		engineering to create new biomedical products	
		-Bio mimicry and its role in biomedicine	
2	Biomedical	-Regular optical methods and imaging systems,	05
	Instrumentation	electro-mechanical probes	
		-Patient monitoring systems	
		-Impedance techniques in physiological	
		measurements	
3	Diagnostic	- Blood Flow meters	07
	equipments	- Pulmonary function analyzers	

			.Y. PATIL VIDYAPEETH, (DEEMED UNIVERSITY)
		- Blood gas analyzers	
		-Cell counters	
		- Endoscopy	
		- Robotics in diagnosis and therapy- case study	
4	Biomaterials	-Molecular structural properties of biomaterials of	07
		microbial, plant or other natural origin	
		- Methods for biomaterials surface characterization;	
		matrix synthesis, degradation, and contraction	
		-materials science and cell biology principles for the	
		design of medical implants, artificial organs, and	
		matrices for tissue engineering	
5	Regenerative	-Principles of organ regeneration	05
	medicine	-Biological processes involved in wound healing	
		and tissue remodeling following implantation in	
		various organs	
		-Challenges and ethical issues	
6	Drug delivery	- Principles of Controlled Drug Delivery, controlled	03
	systems	release devices, drug delivery system efficacy and	
		challenges	
7	Biosensors	-Components and properties of a typical biosensor	05
		-Types of biosensors	
		-Representative design of each type of biosensor	
		-Biomarkers and their role in development of	
		medical biosensors	
		- Applications related to healthcare, bio-defense and	
		food and water safety	
8	Personalized	-Concept and applications	02
	medicine	-Case Study	
	medicine		

METHODOLOGY:

The course will be covered through lectures supported by tutorials and practicals. In tutorials, apart from the discussion on the topics covered in lectures, assignments in the form of questions will be given. Normally a students is expected to complete the assignment by himself, however if needed, difficulties will be discussed in the tutorial classes. There will be two class tests/ and surprise test conducted during the tutorial classes.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

BOOKS RECOMMENDED:

- 1. J B Park, Biomaterials Science and Engineering, Plenum Press, 1984.
- 2. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
- 3. D N Ghista, Biomechanics of Medical Devices, Macel Dekker, 1982
- 4. Khandpur R S, Handbook of Medical Instrumentation, Tata Mc Graw Hill
- 5. D. L. Wise, "Applied Bio Sensors", Butterworth, London.
- 6. Cromwell, Weibell & Pfeiffer, "Biomedical Instrumentation & Measurement", Prentice Hall, India
- 7. Carr & Brown, "Introduction to Biomedical Equipment Technology" Pearson Education, Asia.
- 8. Robbinson C.J., Rehabilitation Engineering. CRC press 1995
- 9. Weiss, Thomas Fischer. Cellular biophysics. Cambridge, Mass., MIT Press.
- 10. Peter J. Carrington, John Scott and Stanley Wasserman, eds., Models and Methods in Social Network Analysis Cambridge University Press, 2005
- 11. Joseph D.Bronzio ,Donald R. Peterson "Biomedical Engineering Fundamentals", The Biomedical Engineering Handbook, Fourth Edition,CRC Press,2014.
- 12. W.Mark Saltzman, "Biomedical Engineering: Bridging Medicine and Technology", Cambridge University Press, 2015.

		0				0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 802.1	3	1	1	2	3	2	2	1	1	2	1	2	2	2	2
BT 802.2	3	1	1	2	3	2	2	1	1	2	1	2	2	2	2
BT 802.3	3	2	3	2	3	2	2	2	2	2	2	3	3	3	3
BT 802.4	3	2	3	2	3	2	2	2	2	2	2	3	3	3	3
BT 802.5	2	2	2	1	3	1	2	3	2	2	2	3	2	1	1
BT 802.6	1	1	1	2	2	2	1	3	3	3	2	3	2	2	2

Matrix for Program Outcome and Program Specific Outcome

COURSE: STEM CELL TECHNOLOGY COURSE CODE: BT803 MARKS: 100

L T P Hr C 3 0 0 3 3

OBJECTIVES:

 \Box The objective of the course is to familiarize the students with the basic concept in stem cell biology

□ Students will also be introduced to the advanced research area of stem cell biology

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 803.1	Explain the fundamentals of stem cells and their types
BT 803.2	Acquire knowledge on pluripotency and epigenetics of stem cells
BT 803.3	Describe the developmental regulations of stem cells
BT 803.4	Comprehend the applications of stem cell technologies and stem cell therapies
BT 803.5	Recognize the challenges in cultivation and large scale production of stem cells and their derivatives for therapy
BT 803.6	Contemplate the ethical aspects related to stem cell technology and stem cell banking

PREREQUISITES:

Since the course is very advanced in nature, student must know about cell-cell interaction, cell signaling and developmental biology.

Unit			No. of
Unit	Topics	Detailed syllabus	Lectures
1	Introduction to stem cells	History of stem cell biology and axis of research; Embryonic stem cells; Adult/ tissue stem cells; Induced pluripotent stem cells	2
2	Stem cell types and applications	Nature, properties and applications of: embryonic stem cells, mesenchymal stem cells (bone marrow, adipose tissue and umbilical cord derived MSCs), cancer stem cells, hematopoietic stem cells, neural stem cells and neural crest stem cells; Production of uniparental embryonic stem cell lines; Parthenogenetic embryonic stem cells in non-human primates.	9
3	Genetic reprogramming	Nuclear and somatic cell genetic reprogramming; Reprogramming somatic cells to pluripotent stem cells and its biomedical applications. Observing and manipulating pluripotency in normal and cloned mouse embryos.	5

		 Beta-cell replacement; Corneal epithelial stem cells 	
		Neurodegenerative diseasesLife style disorders	
		 Exosomes for Drug Delivery Tissue regeneration using different scaffolds and regenerative medicine 	
7	Challenges in	2D and 3D culture systems for pluripotent stem	3
/	cultivation and large	cell cultivation, suspension culture for large scale	5
	scale production of stem	production of stem cells, isolation of stem cell	
	cells and their	derivatives such as exosomes	
	derivatives for therapy	derivatives such as exosomes	
8	Contemporary ethical	Ethical issues in stem cell procurement and	2
	issues in stem cell	usage; Stem cell line banking and wide	
	research	distribution of cell lines.	
	1	Total	45

METHODOLOGY:

The course will be covered through lectures, group discussions and visit to laboratories working on stem cells.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

BOOKS RECOMMENDED:

- 1. Stem cell handbook, edited by Stewart Sell. Publisher: Springer. 2nd edition 2013, ISBN 978-1-4614-7696-2.
- 2. Essentials of stem cell biology, Edited by Robert Lanza & Anthony Atala. Publisher: Academic Press, 3rd Edition 2013; ISBN: 9780124095038, eBook ISBN: 9780124104273.
- 3. Stem cells from basic research to therapy, edited by: Federico Calegari & Claudia Waskow; Publisher: CRC Press; 1st Edition, ISBN 9781482207750.
- 4. Animal Cell Technology: From biopharmaceuticals to gene therapy, edited by: L.R. Castilho, A.M. Moraes, E.F.P. Augusto and M. Butler. Publisher: Taylor and Francis Group, ISBN: 978-0-415-42304-5.
- 5. Global Perspectives on Stem Cell Technologies, edited by: Aditya Bharadwaj, Published by Springer Nature. ISBN 978-3-319-63786-0 ISBN 978-3-319-63787-7 (eBook).
- 6. Stem Cell Research And Therapeutics edited by Shi Yanhong, Clegg Dennis O. Springer Netherlands 2008; ISBN 978-1-4020-8502-4 (eBook)
- 7. Stem cell biology and gene therapy, Booth Catherine, Cell Biology International, Academic Press. Published 2013; https://doi.org/10.1006/cbir.1999.0349
- 8. Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, edited by Alexander Battler, Jonathan Leor, Springer- Verlag London 2006. ISBN 978-1-84628-142-6 (eBook).

	PO1	PO2	PO3	PO4	PO5		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 803.1	2	1	1	1	2	2	-	3	1	2	-	1	3	2	1
BT 803.2	2	1	1	1	2	2	1	3	1	2	1	2	3	2	1
BT 803.3	3	2	2	2	3	2	1	3	2	2	2	2	3	3	3
BT 803.4	3	3	3	3	3	2	2	3	2	2	2	3	3	3	3
BT 803.5	3	3	3	3	3	2	2	3	2	2	2	3	3	3	3
BT 803.6	3	3	3	3	3	2	2	3	2	2	2	3	3	3	3

ELECTIVE IV:

COURSE: TISSUE ENGINEERING COURSE CODE: BT 804 MARKS:150

L T P Hr C 3 0 2 5 4

OBJECTIVES:

- 2 Familiarize the students with the principles and advancements in the field of Tissue Engineering.
- Develop knowledge and awareness towards clinical application of Tissue Engineering.
- □ Impart training and competence towards developing Tissue Engineered Medical Products (TEMPs).

COURSE OUTCOME:

CO No.	At the end of the course, the learner should be able to:
BT 804.1	Recognize different types of tissues and explain their mechanical properties
BT 804.2	Identify different types of cells for tissue engineering and discuss the concept of
DI 004.2	cellular reprograming
BT 804.3	Discuss different types and sources of biomaterials and their utility in scaffold
DI 004.3	fabrication
BT 804.4	Explain various methodologies for tissue engineering and construct 3D cell culture
DI 804.4	methods
BT 804.5	Use various technologies for tissue engineering
BT 804.6	Develop insights into clinical translation of engineered tissue considering the
BI 804.0	regulatory and ethical norms

PREREQUISITES:

Students should have undertaken courses in Cell Biology and Animal Tissue Culture.

Units	Торіс	Detailed syllabus	No. of
			lectures
1	Introduction and	History of Tissue Engineering;	04
	background of tissue	Elements of Tissue Engineering;	
	engineering	Degenerative Diseases.	
2	Concepts in tissues and	Types of tissues;	06
	cells	Cells and environment, Cell signaling,	
		Cell differentiation, Epigenetics,	
		Early embryonic development;	
		Mechanical properties of cells and tissues.	
	Cells for tissue	Different types of cells for tissue engineering with	06
	engineering	advantages and disadvantages;	
		Specific body tissues as stem cell sources;	
		Cellular reprogramming;	
		Autologous/allogeneic cells, Cells and	
		immunogenicity;	

	1		Dr. D.Y. PATIL VIDYA (DEEMED UNIVER
		Stem cell niche; Methodologies for controlling stem	
		cell fate.	
3	Biomaterials in tissue	Types of biomaterials (metals, ceramics, polymers,	08
	engineering	natural/synthetic), Physico-chemical properties of	
		biomaterials (viscoelasticity, tensile strength),	
		Extracellular matrix as a biomaterial;	
		Roles of biomaterials in tissue engineering;	
		Biocompatibility, interaction of cells with the	
		biomaterials, biodegradability, In vitro and In vivo	
		biocompatibility assessment methods for scaffolds;	
		Types of biomaterial scaffolds, Classical methods	
		of scaffold fabrication, Electrospinning	
		Rapid prototyping, Organ decellularization;	
		Materiomics.	
4	Methodologies for	Three-dimensional cell culture methods,	07
4	tissue engineering	Self-organization, Cell sheet engineering, Scaffold-	07
	tissue engineering	based methods;	
		Microfabrication, Cell and organ printing, Extrusion	
		printing, Laser-assisted printing, Inkjet-type	
		printing, 4D bioprinting, Volumetric Bioprinting,	
		Bioinks;	
		Vascularization of engineered tissues;	
		Bioreactors for tissue engineering.	
		Dioreactors for tissue engineering.	
5	Tissue engineering of	Tissue engineering of Skin; Bone; Cartilage;	04
	specific organs	Cardiovascular tissue engineering; Neural tissue	
		engineering	
	Technologies relevant	Gene therapy, Protein therapy,	04
	in tissue engineering	Nanotechnology;	
		Controlled release, Microfluidics, cell	
		encapsulation, smart materials;	
		Biomimetics;	
		Technologies for in vitro applications: Organs-on-	
		chips; Organoids.	
6	Tissue engineering in	Clinical translation of cell therapies and tissue-	06
	practice	engineered products, Safety and Effectiveness	
		Testing, Cell therapy manufacturing, Regulatory	
		considerations;	
		Current status of Tissue Engineering / Regenerative	
		Medicine (TE/RM), commercialized TE products,	
		Tissue engineering in space;	
		Ethical issues in TE/RM.	
		Total lectures	45

METHODOLOGY:

The course will be taught through lectures, exercises, participative learning, videos and and supported by Practicals.

EVALUATION SCHEME (THEORY):

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

BOOKS RECOMMENDED

- 1. Tissue Engineering 2nd Edition, Eds. Clemens Van Blitterswijk, Jan De Boer, Elsevier Inc. 2015.
- 2. Introduction to Tissue Engineering: Applications and Challenges 1st Edition, Ravi Birla, Wiley-IEEE Press 2014.
- 3. Biomaterials Science and Tissue Engineering: Principles and Methods, Bikramjit Basu, Cambridge IISc Series 2017.
- 4. Principles of Tissue Engineering 4th Edition, Eds. *Robert Lanza, Robert Langer and Joseph P. Vacanti,* Elsevier Inc. 2013.
- Tissue Engineering 1st Edition, Bernhard Palsson, Sangeeta Bhatia, Pearson Education India 2016.
- 6. Tissue Engineering 1st edition, John P. Fisher, Antonios G. Mikos, Joseph D. Bronzino, CRC Press 2007.

PRACTICAL IN TISSUE ENGINEERING AND TRANSPLANTATION

(2 Hrs. Per Week)	
------------------	---	--

Marks: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
1	Preparation of ear-shaped hydrogel scaffolds.	Use of appropriate biomaterials for a particular tissue shape.	http://cdn.intechweb.org/pdfs/1820 3.pdf
2	Preparation of porous scaffolds	A method for preparing porous scaffolds and their importance for 3D culture of cells.	https://www.intechopen.com/book s/advances-in-biomaterials- science-and-biomedical- applications/biofabrication-of- tissue-scaffolds
3	Culture of cells in porous scaffold and histological analysis	Performing 3D culture of cells and study of the population of the scaffold with cells in 3D configuration.	Ratanavaraporn J (2006) Comparison of Gelatin and Collagen Scaffolds for Fibroblast Cell Culture. Journal of Metals, Materials and Minerals. Vol.16 No.1 pp31-36
4	Preparation of tubular conduits used for blood vessel engineering	Devising method for preparing tubular biomaterial conduits	Hasan A et. al. (2014) Electrospun Scaffolds for Tissue Engineering of Vascular Grafts. Acta Biomater. 10(1): 10.1016/j.actbio.2013.08.022.
5	Preparation of constructs with vascular-like channels	The importance of vascularization in tissue engineered constructs and a method to introduce channels in a construct	Lovett et. al. (2009) Vascularization Strategies for Tissue Engineering. Tissue Eng Part B Rev. 15(3): 353–370.
6	Encapsulation of cells in alginate beads and MTT staining	Use and method for preparation of cell-laden alginate beads	Debnath T. et. al. (2015) Development of 3D Alginate Encapsulation for Better Chondrogenic Differentiation Potential than the 2D Pellet System. J Stem Cell Res Ther 5:276.

PRACTICAL EVALUATION SCHEME

Examination	Marks
Internal (Continuous) assessment:	20
End semester examination:	30
Total:	50

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 804.1	3	2	2	2	1	2	3	3	1	3	-	1	2	2	1
BT 804.2	3	2	2	2	1	2	3	3	1	3	2	1	2	2	1
BT 804.3	3	2	2	3	2	3	2	2	1	2	2	2	2	2	1
BT 804.4	3	3	3	3	3	3	2	3	2	3	3	3	3	3	2
BT 804.5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
BT 804.6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

ELECTIVE IV: COURSE: MOLECULAR DIAGNOSTICS COURSE CODE: BT 805 MARKS: 150 (Theory 100 + Practical 50)

LT P Hr C 3 0 2 5 4

OBJECTIVES:

- Various molecular techniques/assays could be employed for improved clinical diagnosis and prognosis of various human genetic disorders and infectious diseases.
- □ Understand the principles of various molecular techniques in the context of studying clinically relevant diagnostic strategies
- Mechanisms of pathogenesis in various diseases.
- □ Recent advances and evolution of molecular techniques aiding in clinical diagnosis

CO No.	At the end of the course, the learner should be able to:
BT 805.1	Outline the fundamentals and scope of molecular diagnostics in medical sciences
BT 805.2	Describe chromosomal mutations, chromosome painting and cytogenetic analysis
BT 805.3	Apply the knowledge of gene sequencing techniques to diagnose genetic diseases
BT 805.4	Detect genetic disorder applying the knowledge of molecular diagnostic techniques
BT 805.5	Employ emerging technologies like microarray, FACS, SELDI-TOF in medical diagnosis
BT 805.6	Classify and determine the applications of biomarkers in disease prediction and diagnosis

COURSE OUTCOME:

PREREQUISITES:

Students need to have a good understanding of techniques used in cell and molecular biology and biology of various diseases/disorders.

Sr. No.	Topics	Detailed syllabus	No. of
			Lectures
		(i)History and evolution of diagnostics,	8
		(ii)Significance and scope of molecular	
1	Introduction to	diagnostics,	
	Molecular Diagnostics	(iii)Introduction to types of disorders;	
		(a)Inherited Metabolic Disorders:	
		(i)Lysosomal Storage: Tay-Sachs and Hurler	
		disorders	
		(ii)Peroxisomal: Zellweger spectrum disorder	
		(iii)Mitochondrial: Friedreich ataxia	
		(iv)Metal metabolism disorder- Wilson	
		disease	

		(v)Other inherited metabolic disorders –	(DEEMED UNIVERSITY)
		Phenylketonuria	
		(b)Immune Disorders: Multiple sclerosis	
		(c) Microbial Disease: Viral Disease: Dengue,	
		Bacterial diseas, fungal disease, and Parasitic	
		diseases: Examples of vector- based, food-	
		borne, water-borne, blood-borne etc.	
		(i) Analyses of structural and numerical	
2	Cytogenetic Analyses	chromosomal mutations: Deletion,	8
2	Cytogenetic Analyses	Duplication, Inversions, Translocations, Ring	0
		Chromosomes, Isochromosomes.	
		Chromosomes, isoeniomosomes.	
		(ii) Preparation and analysis of human	
		karyogram.	
		(iii) Banding and staining (AgNOR) of	
		chromosomes.	
		(iv) Fluorescence in situ hybridization (FISH)	
		(v) Comparative genomic hybridization	
		(CGH) in tumor diagnosis.	
		(v)Spectral Karyotyping.	8
3	DNA Diagnostics	(i)PCR-based diagnostics: PCR-based	8
5	DNA Diagnostics	detection of microbes and aneuploidy, Real-	
		time PCR (qRT-PCR)	
		(ii) Southern analyzes based discussion	
		(ii)Southern analyses based diagnostics:	
		(with reference to Hemophilia A, Charcot- Marie-Tooth disease and Fragile-X	
		C	
		syndrome)	
		(iii) Principles and Applications of	
		Ligation Chain Reaction, Single Strand	
		Conformation Polymorphism (SSCP),	
		ARMS-PCR (with reference to detection of	
		Single Nucleotide Polymorphism and point	
		mutations)	
		(iv) DNA sequencing (Sanger and NGS	
		methods)	
		(v) Array based CGH	
		(v) Microarrays	
		(vii) Lab-on-a- Chip approach for	
		molecular diagnosis	
		(vii) Genetic Profiling	
		(ix) Multiplex PCR	
		(i) Hemoglobinopathies: Sickle cell disorders	
		(Hemoglobin electrophoresis)	8
		(ii)Neurodegenerative disorders and	0
4	Clinical Application of	Dynamic Mutations: Huntington disorder	
	Molecular Diagnosis	(PCR)	
	molecular Diagnosis	(iii)Metabolic disorders: Tay-Sachs disorder,	
		(Direct DNA testing methods),	
		Hemochromatosis (PCR-RFLP)	
		TUMUUMATUSIS (FUN-INFLE)	

РРО Dr. D.Y. PATIL VIDYAPEETH, PUNE

		prediction.	
6	Biomarkers in Disease Prediction and Diagnosis	Introduction to disease markers, FDA definition of disease biomarkers, Differences between diagnostic and prognostic biomarkers, Sources for disease markers, Role of predictive biomarkers in prognosis of diseases. Emerging disease biomarkers (eg. Metabolic markers), sepsis, diabetes and cancer (eg. Breast cancer) and molecular oncologic	8
5	Emerging Technologies	 (iv) Marfan Syndrome (Ghent Nosology and DNA tests) Proteomics: Western blot, ELISA, Mass Spectrometry (LC-MS / GC-MS/ MALDI-TOF), Phage display, FACS, Comprehensive Metabolic Panel (CMP), Newborn Screening. 	5

METHODOLOGY

The course would be covered through lectures, group discussions, teaching aids and would be supported by practical.

EVALUATION SCHEME (THEORY)

Examination	Duration	Marks
I Internal	1 hour	20
II Internal	45 mins	15
Attendance		5
End Semester Exam	2 hours 30 mins	60
Total		100

BOOKS RECOMMENDED

- 1. Brooker, R. J. (2009). Genetics: Analysis & Principles. New York, NY: McGraw-Hill.
- 2. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, DC: ASM Press.
- 3. Coleman, W. B., & Tsongalis, G. J. (2010). Molecular Diagnostics: for the Clinical Laboratorian. Totowa, NJ: Humana Press
- Molecular Diagnostics: Techniques and Applications for the Clinical Laboratory Wayne W. Grody, Robert M. Nakamura, Frederick L. Kiechle, Charles Strom, Publisher: Academic Press; ASIN: B003FQM2OI, 1st Edition

PRACTICAL IN MOLECULAR DIAGNOSTICS: (2 Hrs. Per Week)

Marks: 50

Sr. No.	Name of the experiment	Learning objective	Literature/ Weblinks for reference and videos
8.	Southern blot-based diagnosis (e.g. trinucleotide expansions in fragile-X syndrome, SCA, etc.)	Using complementary nucleic acid probes that can hybridize to target DNA, one could learn to analyze specific DNA sequences that may have undergone mutations such as single base change or nucleotide expansions	Molecular Cloning: A Laboratory Manual, Fourth Edition, Michael R. Green, Joseph Sambrook, 2001, Cold Spring Harbor Laboratory Press, ISBN: 978-087969577-4
9.	Western-blot based diagnosis	Using antibodies generated against specific antigens, one could learn how to detect the presence or absence of proteins, which may be diagnostic of certain health conditions.	Molecular Cloning: A Laboratory Manual, Fourth Edition, Michael R. Green, Joseph Sambrook, 2001, Cold Spring Harbor Laboratory Press, ISBN: 978-087969577-4
10	Multiplex PCR to detect deletions in genes (eg: deletions of exons in Duchenne Muscular Dystrophy)	Using combinations of specific primers in a single reaction vessel, one could detect the absence or increased copy number of DNA sequences, which may be indicative of certain genetic disorders.	Beggs, A.H., Koenig, M., Boyce, F.M. <i>et al.</i> Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. <i>Hum Genet</i> 86 , 45– 48 (1990). https://doi.org/10.1007/BF002 05170
	ARMS-PCR to detect SNPs/point mutations (eg: SNPs in Follicle Stimulating Hormone Receptor linked to primary amenorrhea or point mutations in beta-globin gene leading to beta-thalassemia)	Familiarization with ARMS-PCR as a diagnostic tool to identify single base changes in a population and also genotype individuals who may be suffering from certain genetic disorders.	Little, S. (2001). Amplification- Refractory Mutation System (ARMS) Analysis of Point Mutations. Current Protocols in Human Genetics.doi:10.1002/0471142 905.hg0908s07
12	culture, metaphase chromosomes and G-banded karyograms for detection of autosomal /sex chromosomal disorders in human (eg. translocation, deletion, and aneuploidies, etc.)**	Understanding how size of chromosomes, position of centromere, and G- bands could help in the diagnosis of numerical and structural chromosomal aberrations.	Benn P and Delach J (2008) Human lymphocyte culture and chromosome analysis. CSH Protoc. doi: 10.1101/pdb.prot5035.
13	FISH for the detection of translocations and aneuploidies using appropriate probes (e.g.,	Understanding how FISH could be used to confirm the presence of	https://www.creative- biolabs.com/fluorescent-in- situ-hybridization-FISH.html

chromosomes 9-22 translocation, trisomy 21 in human beings)**	chromosomal translocations or increase/decrease in chromosome number,	
	which have been implicated in certain genetic disorders.	
14 Sequencing of human DNA to detect the presence of genomic changes such as point mutations, deletions, and duplications. **	Understand how DNA sequencing could be used to confirm the genetic changes that lead to specific health conditions	Molecular Cloning: A Laboratory Manual, Fourth Edition, Michael R. Green, Joseph Sambrook, 2001, Cold Spring Harbor Laboratory Press, ISBN: 978-087969577-4

**These could be demonstrated to students

Sr.	Name of the	Learning objective	Literature/ Weblinks for				
No.	experiment		reference and videos				
1	Isolation of DNA from blood or saliva	By the end of the course students should be proficient in isolating high quality DNA from human sample for diagnosis with ethical and biosafety consideration	Molecular Cloning: A Laboratory Manual, Fourth Edition, Michael R. Green, Joseph Sambrook, 2001, Cold Spring Harbor Laboratory Press, ISBN: 978-087969577-4				
2	Real-Time PCR	Students will learn to prepare reaction mixture, program thermal cyclers, interpret amplification curve and threshold cycle in detecting pathogen, genetic mutation and gene expression implementing quality control measures and troubleshooting	Green MR, Sambrook J. Analysis and Normalization of Real-Time Polymerase Chain Reaction (PCR) Experimental Data. Cold Spring Harb Protoc. 2018 Oct 1;2018(10). doi: 10.1101/pdb.top095000. PMID: 30275081.				
3	Southern blot-based diagnosis (e.g. trinucleotide expansions in fragile- X syndrome, SCA, etc.)	Using complementary nucleic acid probes that can hybridize to target DNA, one could learn to analyze specific DNA sequences that may have undergone mutations such as single base change or nucleotide expansions	Molecular Cloning: A Laboratory Manual, Fourth Edition, Michael R. Green, Joseph Sambrook, 2001, Cold Spring Harbor Laboratory Press, ISBN: 978-087969577-4				
4	Western-blot based diagnosis	Using antibodies generated against specific antigens, one could learn how to detect the presence or absence of proteins, which may be diagnostic of certain health conditions.	Molecular Cloning: A Laboratory Manual, Fourth Edition, Michael R. Green, Joseph Sambrook, 2001, Cold Spring Harbor Laboratory Press, ISBN: 978-087969577-4				
5	ELISA for detecting hormone or pathogen	Students will learn to perform ELISA (Enzyme-Linked	Kohl TO, Ascoli CA. Immunoassays. Cold Spring Harb				

			Dr. D.Y. PATIL VIDYAPEETH, PUNE (DEEMED UNIVERSITY)
6	Multiplex PCR to detect deletions in genes (eg: deletions of exons in Duchenne Muscular Dystrophy)	Immunosorbent Assay) to detect hormones or pathogens, understanding the principles of antigen-antibody interactions, and how this technique is used in clinical diagnostics for accurate and sensitive detection. Using combinations of specific primers in a single reaction vessel, one could detect the absence or increased copy number of DNA sequences, which may be indicative of certain genetic disorders.	Protoc. 2017 Jul 5;2017(7):pdb.top093690. doi: 10.1101/pdb.top093690. PMID: 28679720. Beggs, A.H., Koenig, M., Boyce, F.M. <i>et al.</i> Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. <i>Hum</i> <i>Genet</i> 86 , 45–48 (1990). https://doi.org/10.1007/BF002 05170
7	Molecular diagnostics facility visits: i) Karyotyping ii) FISH iii) Flow- cytometry Next generation sequencing	Students will gain hands-on experience and understand the principles of Karyotyping, FISH, Flow Cytometry, and Next Generation Sequencing (NGS) during a molecular diagnostics facility visit. They will learn how these techniques are applied in diagnosing genetic disorders and other diseases, and evaluate their role in personalized medicine.	 Benn P and Delach J (2008) Human lymphocyte culture and chromosome analysis. CSH Protoc. doi: 10.1101/pdb.prot5035. https://www.creative- biolabs.com/fluorescent-in- situ- hybridization-FISH.html Molecular Cloning: A Laboratory Manual, Fourth Edition, Michael R. Green, Joseph Sambrook, 2001, Cold Spring Harbor Laboratory Press, ISBN: 978-087969577-4

BOOK RECOMMENDATION:

1) Ausubel F. M. et. al. (1988) Current Protocols in Molecular Biology. John Wiley & Sons, Inc. ISBN: 978-0-471-50338-5.

PRACTICAL EVALUATION SCHEME										
Examination	Marks									
Internal (Continuous) assessment:	20									
End semester examination:	30									
Total:	50									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
BT 805.1	1	1	1	1	1	-	-	1	1	1	-	2	3	1	1
BT 805.2	1	2	1	2	1	1	1	1	1	1	1	2	3	3	1
BT 805.3	1	2	2	2	1	1	1	1	1	1	1	2	3	3	1
BT 805.4	1	2	2	2	1	1	1	1	1	1	1	2	3	3	1
BT 805.5	1	2	2	2	1	1	1	1	1	1	1	2	3	3	1
BT 805.6	1	2	2	2	1	1	1	1	1	1	1	2	3	3	3

Semester IX & X								
BT 901: Research Project/ Industrial Training/ Review writing (10 months)	40 Credits							

OBJECTIVES:

The objectives of this course are to:

- □ Train the students to understand the research environment in a laboratory/ Industrial training and culture
- **Enable students to learn practical aspects of research**
- Impart training to the students for Literature review, Review writing, data analysis and thesis writing.

COURSE OUTCOME:

At the end of the research project/ Industrial training/ Review writing process the students will be able to:

- □ Learn how to formulate research questions, and effectively design, execute, evaluate and discuss their study.
- Attain practical training in the applied aspects of Biotechnology/ Bioinformatics in the industry
- □ Attain in-depth knowledge of the chosen area of research.
- □ Conduct research independently.
- □ Carry out appropriate literature survey and formulate review article
- □ Demonstrate Presentation skills

CO No.	At the end of the course, the learner should be able to:
BT P801.1	Acquire in-depth knowledge of the chosen area of research
BT P801.2	Identify research gap, frame hypothesis/objectives and develop competence in research design and planning
BT P801.3	Perform analytical techniques/experimental methods to obtain objective-oriented results
BT P801.4	Acquire research report writing and publication skills

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
DT D001 1															
BT P801.1	3	3	3	3	1	2	2	2	3	3	2	3	3	3	3
BT P801.2	3	3	3	3	2	2	2	2	3	3	3	3	2	3	2
BT P801.3	3	3	3	3	3	3	2	3	3	3	3	3	2	2	3
BT P801.4	2	2	2	2	2	2	2	3	3	3	3	3	3	2	2

Matrix for Program Outcome and Program Specific Outcome

Note 1: As regards the assessment of the students with exceptional achievements/performance in games and sports, performing/ fine arts, Social Work, NCC, or other similar subjects/ category is concerned, the same can be defined/prescribed based on their level of competition (State level/ National level/International level/ Commonwealth/ Olympics/ World Championships etc), the level of representation (District/ State/ National/ International), medal/distinction achieved in team/ individual events, and such exceptional performance shall be treated equivalent to an assessment.

Note 2: Following approved Value-added courses will be offered besides the above for 1 credit. Courses will be offered as per the approved eligibility. Evaluation will be for 50 marks.

- □ Essentials of research concept and practices
- Art of Hydroponics
- Organic Farming